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SELECTION OF AN APPROPRIATE NUMERICAL INTEGRATION METHOD
FOR SOLVING THE OPTIMAL CONTROL PROBLEM OF AN INDUCTION
MOTOR

Anomauia. YV Oaniii poOomi onucano 3acmocy8anHs YNpaeiiHHs 3 NPOSHO3Y8AHHAM HA OCHOBI 2padieHma 8
cmpamezii enepeoeekmueHozo Kepyeants GeKMOPHO-KEPOBAHUM ACUHXPOHHUM OBUZYHOM 6 NepexioHomy pe-
JHCUMI NPU 3MIHI YMO8 HABAHMAdICEHHA. [ MOOENIO8AHHA ACUHXPOHHO20 O8USYHA 3 OPIEHMAYIEI0 NO OO PO-
mopa, BUKOPUCIIOBYEMBCSE MOOETb 8 NPOCMOPI CMAHIB. 3a80aNHI ONMUMATLHO20 YNPAGLIHHA 6UHAUAEMbCS AK
MIHIMI3ayis tHmeapana empam enepeii 3 oomedicenHamu. 3 yiero mMemoi yMosu ONMUMAIbHOCMI REPU020 no-
PAOKY 8USHAYAIOMbCA HA OCHOGI npunyuny maxcumymy Ioumpseina. Onucano oCHOBHUL ANCOPUMM BUDIUUEHHS
3adaui onmumansrozo ynpasiinta. Ob62080pIOIOMbCA ANeOPUMMIYHI NAPpAMEmPU YNPAGIIHHA 3 NPO2HO3YEAHHAM
071 3a80AHHA YUCENbHO2O IHMe2py8anHA. [10Ka3aHo, wjo WIAXOM HALEHCHO20 BUOOPY MemoOy YUCENbHO2O iHMme-
2DYBAHHS MOJCHA OMPUMATU ONMUMATIbHY MPAEKMOPII0 CMPYMY HAMASHIYYBAHHSA 3 OilbU HUSLKUMU NIKOGUMU
SHAYEHHAMU 8 NOPIGHAHHI 3 IHUUMU MemOOaMu.

Knrouosi cnosa: Bexmophe xepysanHs, ACUHXPOHHI O8USYHU, YAPABNIHHA 3 NPOSHO3YBAHHAM HA OCHOBL
2padieHma, onMUMAIbHUL NOMIK pomopa, eHepoegheKmusHicms, iHmezpamopu

Annomayun. B nacmosaweli pabome onucano npumeHenue YNpasieHus ¢ npocHO3UPOBaHUeM Hd OCHOBe
2paduenma 6 cmpamezui IHEP2OIPHEKMUBHO20 YNPABIEHUS BEKMOPHO-YIPABTIAEMbIM ACUHXPOHHBIM O8u2ame-
JleM 8 NepexoOHOM pedcume nPu USMeHeHUY YCA08Ull Hazpy3Ku. s MOOenuposanus, ACUHXPOHHO20 O8ULAMENA C
opuenmayueti N0 MO0 POMOPA, UCNOALIYEMCA MOOENb 8 NPOCMPAHCmee cocCmoanull. 3aoaua onmumanbHO20
YIpasneHuss onpeoensemcs KaKk MUHUMU3AYUs unmezpana nomeps suepeuu ¢ oepanuyenuamu. C smoul yenwio
VCII06USL ONMUMATLHOCIMU NEPEO20 NOPAOKA ONPeOeNsilomcs Ha OCHOGe npunyuna makcumyma Ilonmpsacuna.
Onucan 0CHOGHOU an2opumMm pewenus 3a0a4u OnMUManbHo2o ynpaeienusn. Oocyjicoanmces aneopummuieckue
HACMPOUKU YNPAGNIEHUs C NPOSHOZUPOBAHUEM 015 3a0a4l YUCIeHHO20 unmezpupoganus. Ilokazano, umo nymem
Haonexcaujezo 6bl60pa Memooa YUCIeHHO20 UHMEZPUPOBAHUS MOJICHO HOTYYUMb ONMUMALLHYIO MPAEKIMOPUIO
MOKA HAMASHUYUEAHUS C OONee HUSKUMU NUKOBbLIMU 3HAYEHUAMU NO CPAGHEHUIO C OPY2UMU MEMOOaMU.

Knrwouegvie cnosa: Bexmopnoe ynpasienue, aCUHXPOHHblE O8UAMENU, YNPAGLeHUe ¢ NPOSHO3UPOBAHUEM HA
OCHOBE 2PaAdUEeHMA, ONMUMATbHBIY HOMOK POMOPA, SHEP2OIPPEKMUBHOCHb, UHMESPAMOPb

Abstract. The application of the gradient based model predictive control in an energy efficient control
strategy of vector-controlled induction motor in transient behaviour when load conditions are changing is de-
scribed in the current paper. A state-space approach is employed for the modelling a rotor-flux-oriented induc-
tion motor. The optimal control problem is defined as the minimization of the time integral of the energy losses
with constraints. To this end the first-order optimality conditions are determined based on Portryagin’s Maxi-
mum Principle. The basic algorithm to solve the optimal control problem is introduced. The algorithmic options
of model predictive control concerning the numerical integrations are discussed. It is shown that by appropriate-
ly choosing the numerical integration method the field-generating current optimal trajectory with the lower
spikes can be obtained compared to the other embedded methods.

Index Terms: Field-oriented control, induction motors, gradient based model predictive control, optimal
rotor flux, energy efficiency, integrators

I. Introduction

In the course of technological progress, the more acute becomes the problem of global energy conservation
because of not only the increase in electricity consumption in industry and households, and the related need for
the construction and commissioning of new energy capacities, but also limited world reserves of resources in na-
ture. Since it is not a secret for anyone that electric motors consume more than 50 % of the world's electric pow-
er, most of which are asynchronous motors, the main way to solve this problem is the introduction of regulated
electric drive systems in all branches of the national economy, which are recognized in the world practice as one
of the most effective energy-saving and resource-saving environmentally friendly technologies.

Induction machines are the most frequently used type of asynchronous drives in many industrial applica-
tions due to their simple structure, robustness and low manufacturing cost. Along with the advances of power
electronics, the task to operate the AC machine with any speed by means of separate control of magnetic flux
and torque was solved with the introduction of the so-called field-oriented control about 40 years ago. Since
then, field-oriented control is state-of-the-art nowadays for synchronous as well as for asynchronous machines.
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One of the drawbacks is the fact that the power efficiency of an induction machine is lower than some other AC
machine types, for example a permanent-magnet synchronous machine. Mainly because a field-generating cur-
rent in addition to torque-generating current is required. Combined with the low-cost stator design it leads to
higher power losses. Moreover, in part-loaded operation mode with rated flux in many applications like fans,
pumps or conveyors, the efficiency will drop even more due to over-excitation and redundant copper losses. All
applications stated above have in common that the machine is operated over considerable time intervals in steady
state at a given speed and a given torque.

To bypass the issue of low efficiency in part-loaded mode of operation for listed types of applications a
generous number of energy efficient control strategies have been developed [1-4]. The main idea of all these
methods is to define the appropriate states of the machine either with the help of explicit calculation based on
machine parameters or by online search algorithms or by a combination of both, so that the field-generating cur-
rent and thereby the field flux is set to an optimal level. It opens an option to obtain the same torque with lower
stator current and magnetic flux, resulting in reduction of chmic and iron losses in induction machines. But such
techniques frequently attenuate the problem of slow torque response under reduced magnetic flux magnitude.
And, of course, the loss minimization is not achieved during transients.

Besides the above mentioned applications, there are servo motor applications. The servo motor is small and
efficient, but serious to use in some applications like precise position control. They are extensively used in those
applications where a particular task is to be done frequently in an exact manner. Currently in this domain the
permanent-magnet synchronous machine is preferred choice, due to higher efficiency and lower moment of iner-
tia. However, they are quite expensive because of the rare-earth materials used to manufacture the permanent
magnets in the rotor. Furthermore, in order to weaken the magnetic field some additional measures are required.
Therefore, the efficiency growth of induction machines in dynamics would also raise its attractivity for servo
motor applications.

Nevertheless, only a comparatively small number of works addressed the minimizations of power losses for
dynamic operation due to a changing motor torque. The first treatment of this problem [5] and [6] is purely of-
fline numerical investigation on a PC, based on full knowledge of the torque and speed trajectories [5], or motion
control of the application [6]. It is shown that compared to the operation under constant magnetic flux linkage, a
significant improvement of reduction of power losses can be achieved. However, the offline optimization is not
feasible in most applications as well as obtained optimal trajectories are valid solely for one specific application.
An analytic investigation of the problem during transients is presented in [7]. It is based on the calculus of varia-
tions. The conditions of optimality use these variations to minimize the total energy losses taking into account
torque-tracking constrains. But for time-varying torque the given problem can not be exactly solved. So, for such
a case, authors have presented a suboptimal solution by replacing constant torque by time-varying torque in or-
der to obtain solution for flux linkage based on the equation for the constant torque. An online implementable
control scheme is proposed in [8]. It is shown in this paper that with a good approximation, it can be assumed
that the optimal magnetic flux is an exponential function and that its time constant can be in this case obtained
numerically. A simple solution is found using a parametrized prototype function and the parameters are evaluat-
ed by an online parameter optimization algorithm embedded in a predictive scheme where it is performed at eve-
ry sampling step. Despite heuristic approximation, the solution is sufficiently accurate. Another recent work
where the optimal trajectory is computed online based on an online optimization is presented in [9]. The optimal
rotor flux reference is determined from the steady state power losses online and the result both for static and dy-
namic mode of operation is evaluated. It is shown that in order to avoid high field-generating current levels dur-
ing flux transients, the flux linkage reference must be filtered. An appropriate choice of the filter time constant
based on the first-order filter structure has been numerically investigated in [10] and determined as a fraction of
the rotor time constant to give a user a simple design criterion. The synthesis of the filter can be pursued ever
further using the methodology given in the recent paper [11].

This paper discusses another approach. In this context, we use method described in [12] with the purpose of
improvement the efficiency of the induction machine in transient behaviour when load conditions are changing.
This approach is appropriate for fast and high-dimensional nonlinear systems with control constraints and based
on so-called model predictive control.

To illustrate this solution first the essential model equations for the induction motor as well as the relation-
ships for the power losses will be given. Subsequently, in Section 111 the optimization problem is formulated and
the algorithm for the solution according to [12] is described. Section IV discusses the selection of appropriate al-
gorithmic options and presents the results obtained.

1l. Background

For the modelling of the induction motor, all variables are transformed from the three-phase system (abc) to
an orthogonal amplitude invariant dq reference frame with a direct (d) and a quadrature (q) axis, so that the
length of a pointer corresponds to amplitude of the associated sinusoidal signal. Consider I'-inverse equivalent
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circuit given in Figure 1 with orientation of the rotor flux o along the d-axis of the synchronously rotating co-
ordinate system Woq =2, Woq = 0, where L, — stator leakage inductance, Lﬂ — mutual inductance.

K L, fj i:

1=

(e, @
Fig. 1. T'-inverse equivalent circuit of induction machine

An induction motor in this case is characterized by the following equations in state-space, rotating with the
speed @y :
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Assume that the speed and current regulators of field-oriented control have high enough performance to en-
sure the control characteristic close to perfectly rigid, that is, the dynamics of the stator currents is significantly
higher than the dynamics of the magnetic flux and speed. In other words, a stepwise change in the load on the
motor shaft does not lead to a significant deviation of the speed from its reference. In such a case, the dynamics
of the speed and current controllers can be disregarded. The reduced motor model can be rewritten as:

. R,
=——= Rolyg,
V2 L, W2 +Ralid (2)
My = 3Z | 3)
M=5 p¥2l1q-

The system of model equations in the form (2, 3) is the main mathematical object of the present study. The
power losses to be considered in this paper are so-called copper losses that come from resistance of the stator
winding and the rotor cage. Losses due to eddy currents and the magnetization of the plates in the stator and ro-
tor are not taken into account. It is made for the sake of simplification, but it does not constitute any limitations
for the application of the method described in this paper. For the copper losses:

R = SRUZ+2 R, 13 @

Now rewrite equation (4) taking in account the fact that the total values of the stator current and the rotor
current in the rotating dg coordinate system are calculated by Pythagoras” Theorem:

R/ =§R1(I12d + |12q)+§R2(|22d + |§q) (5)

According to the equations of the magnetic system of the motor, in field oriented control we have

1
l2g =—liqg Ve (6)
7

loq = —lig- @
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Now (6) and (7) can be substituted in (5) resulting in:

2
3 2 3_..2 3 1
R =E(R1+R2)|1q "'ERllld +ER2[— l1g +—W2J

L
# 8)
3 2 3 2 3R
=E(R1+R2)|ld +E(R1+R2)Ilq =2 l//z 3—!//2|1d-
L
/1 u
The equations (1) and (6) give the following relationship:
R, .
Rolog =—=w2—Rolyg =y ©)
Lﬂ
Thus, the expression for power losses in steady state mode:
352,383 2
R/ stationary ZERllld +§(R1+R2)|1q- (10)

I11. Optimization problem
This article takes its point of departure in the following considerations:
Field-oriented control scheme is used to control induction machine with orientation of the rotor flux

along the d-axis of the synchronously rotating coordinate system o4 =y, wpq =0 at a specific rotational

speed and a given torque. At a certain point in time, the torque setpoint is changed. What must be done is to ad-
just motor parameters in such a manner that the energy loss during transient process is as low as possible. It is
assumed that the dynamics of current regulators can be neglected as stated above. This neglect is justified in so
far as their time constants in practice lie in a range up to one millisecond. That is why in this paper for the sake
of simplicity a decision was made to proceed with this move. But the time constant for the transient process after
torque setpoint change is comparable to the rotor time constant T, =L, /R, and thus around 50 ms. The rota-

tional speed reference is ramp-shaped which is customary in practice. A great emphasis will be placed on the
field-generating current regulator.
When vector control is used, the magnitude of the torque-generating current lq is determined by the

torque on the motor shaft and magnetic flux linkage. Taking into account that in steady state the motor develops
a torque equal to the load torque, from the equation for the output torque (3) the steady state value of I1qCan be

written

2My

(11)
3z pl//2

lig =

After substitution of (11) in (8), the power loss R, for a constant M), depends only on the state variable

w5 and manipulated field-generating current 1,4 . Attime t =0 a torque setpoint change from My, to M1

occurs when motor operated in steady state. Thus, the optimal control problem consists in the minimization of
the time integral of power losses, that is, the energy loss:

T 2
3 2 M 3R R

3= ]| SRy +R)Ify += (R +Rp) 5+ =—2y§ -3 2yplyq [t (12)
0 2 3 Zpl//z 2 L/l L

]

under the constraint (2) with boundary conditions y,(0) =5y and y,(T)=w,;. According to the task descrip-

tion the motor operates in steady state before torque setpoint change and afterwards when transient process is
finished. Therefore, in steady-state at a given motor torque the optimal rotor flux linkage values w5 and woq

can be calculated by the following expression:
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2MyL Ry +R
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p

To find a solution of optimal control problem the Hamiltonian has to be defined:

3 2 MZ 3R R
H(lg.w2,4) == R+ Ro) Iy += (R + Rp) 5+ = 25 —3—2 5l
2 3 Zowy 2L, L

(14)
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with the next first-order optimality conditions for the optimal trajectories that follow from Pontryagin’s Maxi-
mum Principle:

o :3(R1+R2)I1d—3&wZ+ﬂR2 =0 (15)
dlyg L,

2
ﬁ:—f(RﬁRz)%wR—fw—e&lm— Re_; (16)
Oy2 3 Zpys Ly Ly Ly
oH R .
— =2y, +Rylyg =y a7
oA L,

The solution of the optimization problem can be obtained from the differential equation system above.
However, only a numerical solution is possible. For this purpose, the model-predictive method based on a pro-
jected gradient search algorithm GRAMPC from [12] is used in this article, the principles of which are briefly
described below.

GRAMPC is a software package that implements a model predictive control scheme for nonlinear systems
by solving an optimal control problem with the prediction horizon Tp >0. In order to maintain real-time feasi-

bility of the overall MPC algorithm as well as limit the computational time a fixed number of gradient iterations
N/ max S used in each new MPC step t, and the current solution is used as new initialization (warmstart) to suc-

cessively refine the predicted MPC trajectories over the single MPC steps. The result is a time-discrete trajectory
for the control variable. In the present task, this would be a sequence of setpoint values for field-generating cur-
rent l4 . For the problem introduced in this paper, the basic algorithm to find a solution looks like as follows:
« Initialization of input trajectory ly4(t) for t=e [t t, +Tp] and calculation of resulting value for y,(t)
using expression (2).
e Iterations to solve the optimization problem:
1) The adjoint state 4 is calculated by backward time integration of (14).
2) Taking into account the result of the previous step and expression (15), the search direction of
the line search problem is defined for the iterative improvement of the solution. An improved trajectory
l14 (t) is defined with a likewise calculated step size. Then a limitation of the control variable can be tak-

en into account using projection function.

3) With the improved trajectory 4 (t) a new prediction for w,(t) is carried out.

4) Once the number of desired iterations is reached, the new control trajectory is calculated.
l1g (t ) is used as a manipulated variable for the process in this algorithm. Then the method starts again
for t, +1. Otherwise the next iteration starts with the second item.

A detailed description of the gradient algorithm of GRAMPC, individual steps and the discussion of the
background can be found in documentation [12] (see algorithm in Table 3.1).

IVV. The method application

The algorithmic options of model predictive control concerning the numerical integrations in the basic pro-
cedure are in the foreground in this section. An algorithmic option named integrator specifies which integration
scheme is used for the forward and backward integration of the system and adjoint dynamics. So far, the follow-
ing integration methods are implemented within GRAMPC: Euler method (Option value: euler), modified Euler
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method (Option value: modeuler), Heun method (Option value: heun) and a Runge-Kutta method of 4th order
(option value: ruku45). The first mentioned integrators use a fixed step size, whereas the Runge-Kutta method is
a variable step size integrator. The solution of the ordinary differential equations, first of all, comes down to the
choice of the order of the numerical integration method. The order of the numerical method is not related to the
order of the differential equation. These methods are characterized by such attributes as the rate of convergence,
convenience, quality of the result, and type of step size.

In mathematics and computational science, the Euler method (also called forward Euler method) is a first-
order numerical procedure for solving ordinary differential equations with a given initial value. It is the most
basic explicit method for numerical integration of ordinary differential equations and also efficient enough to
yield fairly accurate approximations of the actual solutions. Explicit methods calculate the state of the system at
a later time from the state of the system at the current time without the need to solve algebraic equations. For the
forward method, first a step size or h is chosen. The size of h determines the accuracy of the approximate solu-
tions, meaning that as the step size decreases the error between the actual and the approximation reduces as well.
This method produces a series of line segments, which thereby approximates the solution curve. Let
X¢, k=0,1, 2,... be a sequence in time with

X1 =Xk + h. (18)

Let us denote y, and Y, as the exact and the approximate solution at x =X, respectively. To get Y4
from (x,Yy ), the differential equation is used. Since the slope of the solution to the equation y; = f(x,y) at the
point (x,yx) is f(xc yy), the Euler method determines the point (x.s,Y,.1) assuming that it lies on the line
through the point (x,,Y,) with the slope f(x,Y, ). From this reasoning, the formula for the slope of a line looks
like as follows

Vi =Yie + f (e, Yioh. (19)

Thus, knowing a value of the function y; = f(x,y) at the initial point (xg, o) allows us with the help of
the formula above find the approximate solution y; = yg+ foh. The Euler method is more accurate if the step

size is smaller. Roughly speaking, the error is halved by halving the step size. However, it doubles the amount of
computation.

The next method that is to be described is still the same first-order method, however, in the middle of the
step, a "primary" solution is found, and then its refinement occurs. This allows us to raise the order of the con-
vergence rate to two. It is called Modified Euler method is another popular method of numerical analysis for the
integration of initial value problem. It solves ordinary differential equations by approximating in an interval with
slope as an arithmetic average. This method is a simple improvement on Euler’s method in function evaluation
per step. The calculation formula for the Euler method can be obtained using the expansion of the function y(x)

into Taylor series in a neighborhood of some point x, :

dy(xk) h2 dzy(xk) h3 d3y(xk)
+h)= +h +— +— +... 20
y(Xk ) y(Xk ) dx 2 dx2 3 dx3 ( )

Then define the second derivative, approximating it to a finite difference:

d?y(x) _d dy(x) A y'(% +h)- y'(Xk). 1)
dx? dx | dx AX h
Substituting this expression in (20) and discarding the terms of series beginning with the ones containing
h3
h[dy(x)  dy(x+h)
X +h)=y(x )+—= + : 22
y(x +h)=y(x) 2{ i ix (22)

Replacing in the last expression the derivatives and using the abbreviated notation, we obtain the calcula-
tion formula of the modified Euler method:

h
Yk+1 = Yk +E[f (4, Vi )+ T (it Viesn)l (23)
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The relation (23) gives a solution for y, 4 in an implicit form, since y, 4 is present simultaneously in the

left and right parts. It should be noted, that the use of implicit methods is justified by the fact that as a rule they
are more stable than explicit ones. The modified Euler method provides the second order of accuracy. The error
at each step is proportional to h3. Increase in accuracy can be achieved due to additional computer time in the
calculation of each step.

A direct substitution of (19) into right-hand side of (23) gives the calculated ratio for Heun’s method.
Heun’s method may refer to the improved or modified Euler’s method, or a similar two-stage Runge-Kutta
method. According to Heun’s method, first the intermediate value Yy 4 to be calculated and then the final ap-

proximation vy, 4 at the next integration point.

Vi1 =Yk + f (xic, Vi)

h - (24)
Vi1 = Yk +E[f O i)+ O Vi)

In the modified Euler’s method, to obtain a second derivative d Zy(xk )/ dx? a finite-difference formula (21)
is used, which includes the values of the first derivative y'(x,) and y'(x, +h) at the initial and final points of the
step. If we calculate the third derivative in a similar way, having pre-calculated the second derivative at two

points of the step, then (20) can be used to construct the calculated formula of the third-order accuracy method.
For this purpose, the definition of the first derivative y'(x) at the additional intermediate point between x, and
Xg + h.

Similar reasoning allows us to derive calculation formulas for higher-order methods that provide a noticea-
ble reduction in the error of the solution. However, in practice, their implementation requires a significant in-
crease in the amount of computation using additional intermediate points at each step.

There are other ways of constructing numerical methods with a high order of accuracy. One of them is used
in the construction of the Runge-Kutta group of methods. It consists in approximating the solution of the differ-
ential equation by the sum

y(4 +h) = &(x,h) =y )+ 2P Akq(h), (25)

where A, - coefficient of expansion, k,, - sequence of functions.
One of the most well-known version of the Runge-Kutta method corresponds to p=4. This is a fourth-

order accuracy method for which the error in the step is of order h®. Its calculated formulas have the following
form:

ki +2ky + 3k + kg

5 (26)

Yk+1 =Yk +

where

klzhf(xquk)v ko, =hf| x +E Y| +ﬁ
ko i 2 )

ks =hf| x +h +-—=
3 k Zyyk 2 ' k4:hf(Xk+h,yk+k3).

The Euler method and its modification considered above are essentially Runge-Kutta methods of the first
and second order, respectively. Despite the increase in the volume of calculations, the fourth-order method has
an advantage over the methods of the first and second orders, since it provides a small local error. The Runge-
Kutta method is a variable step size integrator and, consequently, the calculation time can be shortened.

The figure below represents the result of solving the optimal control problem with the help of numerical in-
tegration methods described above.

The curves presented are the optimal trajectories for the field-generating current 1,4(t). The given investiga-
tion is conducted using parameters of induction motor with rated power 370W. The main inductance is assumed
to be constant. The test was performed for the case of load step change from 25% up to 100%. This simulation il-
lustrates the fact that for solving the energy efficiency optimization problem for induction motor torque steps, the
most convenient choice is Euler’s integration method, due to

1) better optimal trajectory with lower current spikes that lead to additional losses;
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Fig. 2. Optimal control problem solution

2) higher computational speed which is very important for the task of real-time implementation as the
model predictive approach requires high computational expenses for microprocessor technologies.

V. Conclusion

This paper has shown how a control method with a predictive model can be used to optimize the energy ef-
ficiency of an induction motor in dynamic mode. So, firstly the expression of power losses when considering on-
ly copper losses in dynamic mode was obtained. Assuming that the optimal control problem and first-order op-
timality conditions were formulated, the predictive model parameter concerning the numerical integrations was
considered and it was shown that the Euler’s integration method suits the best for solving the highlighted optimi-
zation problem.

Various additional issues will be addressed in the future including optimal choice of algorithmic parameters
like prediction horizon, the maximum number of iterations to improve the solution of the optimization problem
and number of data points for the control trajectory.
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