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WAYS TO ACHIEVE INTERNAL PARALLELISM OF TASKS 
IN MULTITHREADED COMPUTING

The article analyzes the evolution of the architecture of computer systems and identifies a way to improve 
the performance of calculations. It consists in the use of multi-threaded technologies as a set of hardware, software 
and methodological solutions. Multi-core processors are considered as the object of research. Each of the cores 
has its own cache memory, and at this level they can be considered as computing devices with distributed memory. 
At the same time, with large amounts of computation, this memory is not enough, so the shared memory is used, 
that is, they are transformed into devices with a common memory. Therefore, in terms of memory access, multi-
core processors can be considered as hybrid computing devices. The goal of the work is to analyze approaches to 
optimizing transformations of calculations in the form of iterative cycles with subsequent experimental verification 
of their effectiveness on computers with multi-core processors. The novelty of the approach lies in the fact that 
traditionally arithmetic cycles are considered in optimization problems, which is a more particular problem. The role 
of the compiler is highlighted in code optimization by searching for internal parallelism. Attention is paid to cycles 
as the most promising object for parallelization. The indicator of «Depth of Inter-Step Communication in the Loop» 
(DISCL) is proposed, and the conditions for parallelization of cycles are formulated. The problem of load balancing 
during parallelization is considered. The results of experiments on the use of MPI technology for parallelization 
of some computational tasks, which use iterative cycles (sequences and numerical integration), are presented. 
As a criterion for the performance of calculations, invariant to the characteristics of various computer systems, 
the indicator λ is proposed. It designates the relative part of parallel computing in their total volume.
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ШЛЯХИ ДОСЯГНЕННЯ ВНУТРІШНЬОГО ПАРАЛЕЛІЗМУ ЗАДАЧ 
ПРИ БАГАТОПОТІКОВИХ ОБЧИСЛЕННЯХ

У статті проаналізована еволюція архітектури комп’ютерних систем и визначений шлях підвищен-
ня продуктивності обчислень. Він полягає у використанні технологій багатопотіковості., як сукупності 
апаратних, програмних та методологічних рішень. У якості об’єкту дослідження розглядаються бага-
тоядерні процесори. Кожне з ядер має власну кеш-пам’ять, і на цьому рівні вони можуть розглядатися, 
як обчислювальні пристрої з розподіленою пам’яттю. У той же час, при великих обсягах обчислень цієї 
пам’яті недостатньо, тому використовується загальна пам’ять, тобто відбувається їх трансформація 
у пристрої зі загальною пам’яттю. Тому багатоядерні процесори по доступу до пам’яті можуть розгляда-
тися як гібридні обчислювальні пристрої.

Метою роботи є аналіз підходів до оптимізуючих перетворень обчислень у вигляді ітераційних циклів 
з наступною експериментальною перевіркою їх ефективності на комп’ютерах з багатоядерними процесо-
рами. Новизна підходу заключна у тому, що традиційно у задачах оптимізації розглядаються арифметичні 
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цикли, що є більш строщеною задачею. Визначена роль компілятору в оптимізації коду за рахунок пошуку 
внутрішнього паралелізму. Приділено увагу циклам, як найбільш перспективному об’єкту для розпаралелю-
вання.  Запропонований показник «глибіни міжкрокового зв’язку у циклі» (ГМКЦ) та сформульовані умови для 
розпаралелювання циклів. Розглянута проблема балансування навантаження при розпаралелюванні. Надані 
експериментальні результати по застосуванню технології MPI для роспаралелювання деяких обчислюваль-
них задач, що використовують ітераційні цикли (ряди и чисельне інтегрування). У якості критерію продук-
тивності обчислень, інваріантного до характеристик різноманітних комп’ютерних систем запропонований 
показник λ, що характеризує відносну частку паралельних обчислень у їх загальному обсязі.

Ключові слова: продуктивність обчислень; компілятор, що розпаралелює; внутрішній паралелізм; 
оптимізація циклів.

Urgency of the problem. For more than 50 
years, industrial progress has been determined by 
the level of development of computer equipment 
and technologies. With the increasing amount of 
information, higher and higher requirements for 
the performance of computer systems are put 
forward («Moore's Law» – Gordon Earle Moor, 
1965). Until recently, this was achieved through the 
development of the technical component, namely, 
increasing the speed of information processing 
in various components of computer systems. 
However, today the potential of this path, for known 
reasons (leakage currents, power consumption 
and heat sink), has almost been exhausted and 
has reached its maximum.  Therefore, technologies 
related to the simultaneous processing of 
information by parallel devices come to the fore. 
First, parallel memory banks began to be used, 
and then multiprocessor systems. 

Analysis of recent research and publications. 
A number of publications on the topic of high-
performance computing focus on the architecture 
of computing systems and their hardware 
component. According to well-known Flynn's 
taxonomy (Flynn Michel. J.  1966), multiprocessor 
computer systems belong to the MIMD (Multiple 
Instruction, Multiple Data) class. The issues 
of implementation of supercomputers based on 
cluster systems are most dynamically covered in 
periodically published reviews (Internet-resources: 
www.top500.org; www.nvidia.com; www.itc.ua/ua/; 
www.overclockers.ua/ etc.).  

The idea of creating multi-core processors, as 
an evolution of the SMP architecture, is based 
on a nonlinear relationship between three main 
characteristics:   

– clock frequency; 
– power consumption and heat sink; 
– compute performance.
Since the bulk of the power consumption in 

the processor is dynamic power Pd, which is 
spent on switching CMOS switches and charging 
capacitors, it can be determined by the formula 
(W. Wolf, 2002):

P CV fd =
2                                    (1)

In turn, the switching time is inversely 
proportional to the applied voltage, therefore, the 
switching frequency f is directly proportional to 
the voltage V. This makes it possible to assert 
that the power consumption of the processor Pd is 
proportional to the third degree of frequency f.

Empirically, it is established that when the clock 
frequency is increased by 20%, the processor 
performance increases by only 13%. This 
phenomenon is called the «The Moore’s gap». At 
the same time, power consumption will increase 
by (1.2)3 times, that is, by 73%!

Such a nonlinear dependence justifies the 
feasibility of replacing a single-core processor 
with a multi-core processor with the same 
power consumption, however, with greater total 
performance.

The second part of the publications is devoted 
to the issues of parallel computing software.

A kind of «basic» programming languages, the 
development of which has provided support for 
parallel computing, are FORTRAN and C/C++. 

However, there are several basic standards for 
building parallel computing processes:

POSIX Threads – execution thread 
implementation standard;

OpenMP – parallel programming standard in 
a shared memory environment (SMP-systems) 
(Rohit Chandra, Ramesh Menon, Leo Dagum, 
David Kohr, Dror Maydan, Jeff McDonald, 2000);

MPI – a standard for the transfer of messages 
between parallel executable processes in 
computing systems with distributed memory, for 
example, massively parallel systems, clusters 
and GRID systems (William Gropp, Ewing Lusk, 
Anthony Skjellum, 1999).

The latter two technologies have long been 
dominant in the field of parallel computing, so let's 
look at them in a little more detail.  

There are their implementations for various 
programming languages, which allows when 
developing a program to achieve the necessary 
independence from the features of the computer 
system on which it will be executed.

Finally, it is possible to distinguish a large group of 
publications that consider the algorithms for building 
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parallel calculations (V.V. Voevodin, 2002; V.P. Gergel, 
2009; E.N. Gordeev, 2011). However, only arithmetic 
cycles are considered as the object of optimization, 
while most numerical methods are based on iterative 
cycles. In cycles of this type, the number of repetitions 
is not known in advance, so it is impossible to build 
a tier-parallel form of the calculation algorithm in 
advance and decompose the data.

The ultimate goal of using any parallel 
programming technology is to get the most 
productive program. However, these technologies 
themselves are essentially a set of directives that 
are taken into account in one way or another at 
the compilation stage. Therefore, it is the compiler 
that ultimately determines the result in the form 
of a machine program. There are techniques that 
allow to improve the properties of grammars even 
at the stage of recognizing chains of characters 
and building a parse tree (V. Pavlov, 2016).

If the compiler cannot find snippets of programs 
that can run in parallel, then it will generate sequential 
code of the machine program in this case.

The main stages of compilation are presented 
in Fig.1:

 

Fig. 1. Stages of a compiler

When lexical, syntactic, and semantic parsing is 
performed, code optimization is begun. The main 
goal of optimization is to get faster and smaller code.

Code optimization can be divided into global and 
local, where the latter affects only some blocks. Such 
blocks include, for example, linear sections of the 
program and cycles. The optimization process consists 
in the application of some techniques that should lead 
to the desired result – «optimizing transformations» 
(Aho Alfred V., Ullman Jeffrey D, 1979).

The goal of the article is to analyze approaches 
to optimizing transformations of calculations 
in the form of iterative cycles with subsequent 
experimental verification of their effectiveness on 
computers with multi-core processors.

Presentation of the main material of the 
study. A well-known proverb says that it is useless 
to look for a black cat in a dark room. To paraphrase, 
you can only parallelize those calculations for 
which it is possible to do so. That is, initially the 
algorithm for solving the problem should contain 
computation, which in principle can be performed 
simultaneously without compromising the result, 
that is, have internal parallelism (V.V. Voevodin, 

2002). If it is missing it will not be possible to get 
the acceleration of calculations, even if there is an 
unlimited number of computing devices.

This is best illustrated by the well-known 
Amdahl's law (Amdahl Gene M., 1967), according 
to which the acceleration of calculations due to 
the use of several computing devices is possible 
only in that part of the program, where parallel 
computing is present. In other words, if the more of 
the computation in the program can be parallelized, 
then the acceleration is higher from the use of 
parallel computing devices.

However, in many cases, the initial parallelism 
of calculations is either hidden or absent altogether. 
To identify hidden parallelism in the algorithms, it is 
proposed to use the directed graph of the algorithm 
(V.V. Voevodin, 2002). In this case, the number of 
tiers is taken as a criterion for the effectiveness of 
this algorithm. The concept of unlimited parallelism 
was also formulated, which implies the presence 
of an unlimited number of processors with shared 
memory and instant transmission of messages 
between them.

Therefore, the main direction of improving the 
performance of calculations is to improve the 
algorithms for executing programs

Loop optimization. Loops as a group of 
repetitive calculations are inherent in almost all 
programming languages and most programs. They 
take a significant time, so their optimization can 
significantly increase the speed of calculations. 
These transformations include (Aho Alfred V., 
Sethi Ravi, Ullman Jeffrey D, 1986):

– Code motion beyond the loop;
– Removal of Induction Variables, which can 

be counted;
– Replacing Complex Operations with Simpler 

and Faster ones;
– Loop Unrolling;
– Loop fission (sub loops);
– Loop Inversion.
Obviously, the loop execution time is proportional 

to the number of loops and the execution time of 
a single step. Therefore, the ways to reduce loop 
execution time are either to reduce the number of 
loops or to reduce the duration of operations at 
each step.

To use parallel computing, the first method is 
preferable, because it guarantees uniform distribution 
and load balance on computing devices. If there is a 
loop of N repetitions of calculations, then it can be 
distributed to P computing devices, determining that 
each will perform N/P steps of the loop. 

But this is not always possible if the results 
calculated at one step of the loop are used 
at subsequent steps in the loop (V.P. Gergel, 
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V.A. Fursov, 2009). To assess this, we will use the 
concept of «Depth of Inter-Step Communication 
in the Loop» (DISCL), which will show the 
maximum number of preceding steps in the loop, 
the data from which is used in the current step. 
For example, when calculating the usual sum of 
a series, the DISCL is equivalent to 1, since it 
is needed for calculating and adding to the sum 
the previous terms only. And when calculating 
the Fibonacci sequence, you need to know the 
results of the last two steps, so DISCL is 2. The 
value of DISCL shows the relationship between 
the individual steps of the loop, the larger it is, and 
the more difficult it is to carry out calculations in 
parallel.

Ideally, of course, it is necessary that the 
calculations at each step of the loop do not 
depend at all on the results of the previous steps 
and DISCL is 0. This is possible only when there 
is a mathematical formula for any member of the 
sequence, in which its value An depends only on the 
data known at the beginning of the calculation (x) and 
the step number n (iterative variable): An = F(x, n).  
Such formulas exist for arithmetic and geometric 
progressions, as well as for many other sequences. 
In this case the calculation of each member of the 
series is completely independent and is a local task, 
hence, they can be executed in any sequence and 
on any computing device, including in parallel. As 
for the Fibonacci sequence, to date this problem 
has not been solved, since the well-known Binet 
formula gives too large an error for it. 

Two more problems remain to be solved:
– load balancing of computing devices;
– transfer of results to combine them into one 

amount.
The first problem is solved by distributing local 

problems between parallel computing devices 
according to the cyclic algorithm round-robin 
(Thakur V., Kumar S., 2014). Since the volume, 
and hence the time, of calculating the terms of the 
series is a monotonously increasing or decreasing 
function, this algorithm gives the best result.

The solution to the second problem is related 
to minimizing the time on switching between 
computing devices. To avoid having to synchronize 
the results multiple times during the calculation 
process, it would be optimal to form a local 
partial sum on each computing device from those 
members of the series that this device calculates. 
Then the switching will be performed once only at 
the very end of the calculations, when all partial 
sums will be fully formed. 

A similar approach is applicable to some 
problems, such as numerical integration methods. 
If we do not go into details of the features of each 

method, it is highlighted their general part: the 
entire integration interval is divided into segments, 
on each of which numerical integration is 
implemented. The total value of the integral is then 
defined as the sum of the results at each segment. 
In doing so, to start calculations, it is enough to 
know the integrable function and the boundaries of 
a particular interval. That is, the calculation of each 
partial amount is completely independent of the 
others, hence, the integration of segments can be 
performed in any sequence, as well as in parallel 
on several computing devices.

Solving the load balancing problem in this case is 
much more complicated. All methods of Numerical 
Integration of Newton-Cotes quadrature rules are 
iterative, with the number of iterations depending 
on the required accuracy. The greater the number 
of segments into which the initial integration interval 
is divided, the more accurate the interpolation, the 
smaller the integration error. If Runge's rule (Runge 
Karl, 2019) is used to estimate the accuracy of 
calculations, the number of calculations performed 
on different segments will be different too. To 
equalize the volume of calculations, it is advisable 
to use the Gauss-Legendre method (Iserles Arieh, 
1996) with unequal lengths of segments, however 
it is applicable to an odd number of nodes only and 
therefore to an odd number of parallel threads. 

Minimization of switching time is also achieved 
by sending the result from each computing device 
to the master device one, where summation is 
performed in any sequence of the results obtained. 

Experimental testing. The experimental test 
was performed on multi-core computers with 4-core 
processors Intel i3-10xxx, i3-7xxx, i5-8xxx, i5-6xxx 
and etc. To do this, the computers of students who 
participated in the testing his program were used. 
At the same time, to study multithreading as a 
consequence of multi-core, hyper-threading mode 
was disabled. The operability of the programs 
was checked by testing them on test cases, 
however, the main objective was to evaluate the 
temporal characteristics of the programs and their 
subsequent analysis.

MPI technology was used to implement 
multithreading because each kernel has its own 
cache memory L1 and L2, that is, with relatively 
small amounts of data refers to devices with 
distributed memory.

Internal parallelism is achieved by the fact 
that the thread rank is used in calculations as a 
parameter, due to which the universality of program 
execution by any core was achieved.

For example the sum of the members of a 
series is divided into two sums: 
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The internal sum iterates through the threads of N 
computing devices, and the external sum – iterates, 
the number of which has decreased by N times.

As an initial task, calculations of the sums of 
Taylor decomposition series for various functions 
were simulated. Since the mathematical model 
of calculations was implemented in the form 
of iterative circles, the amount of calculations 
was determined by the required accuracy of the 
result. Thus, an array was obtained of temporary 
estimates of program execution for various 
mathematical functions, which were calculated 
with varying accuracy on different computers with 
multi-core processors, where the number of cores 
used in the calculations also changed. 

Since all the processors that were used in the 
experiment had completely different performance 
characteristics, then there was no sense in 
comparing the resulting time estimates.  The 
obtained estimates were processed by statistical 
methods, and their average values were used to 
calculate the indicator λ, which is proposed as an 
indicator of the effectiveness of multithreading.

Indicator λ characterizes the relative part of parallel 
calculations in their total number and used in Amdahl's 
formula (Amdahl Gene M., 1967). This indicator was 

chosen because it is more dependent on the on the 
internal parallelism of the program algorithm rather 
than the characteristics of the computing device on 
which the program is implemented. 

To calculate the indicator λ, a transformation 
based on Amdahl's law was used:

�
�
�

1 1

1 1

�
�

�/

/

P

N
N                             (3)

where PN – acceleration due to N parallel computing 
devices;
N – number of parallel computing devices.

If for the same mathematical problem the 
calculations occur on the same computer, then we can 
get the function λ(N). If the value of  λ(N) increases, it 
means that part of the parallel calculations increases, 
if it decreases, then the serial. 

For example, for the results presented in Fig. 2, 
we get the following λvalues:

Table 1
Indicator λ for temporal estimates  

of the calculation of the hyperbolic cosine  
with an accuracy of 10-8

Number of cores (N) Time (ns) λ
1 65.347 -
2 46.328 0.5829
3 36.828 0.6546
4 29.039 0.7408

 

Fig. 2. Example of the formation of temporal estimates when calculating the value  
of the hyperbolic cosine with an accuracy of 10-8
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Thus, we get a tool that allows us to compare 
the efficiency of multithreaded processing when 
solving, for example, various mathematical tasks 
on one computer or, conversely, the same task on 
computers with different characteristics.

To increase the repeatability of the result on the 
computers where the test was performed, almost all 
applications stopped, except for those that formed 
the software environment. However, there was 
some fluctuation in the indicators of the program 
execution time, so averaging was carried out, both 
in one experiment and the results of experiments. 
However it was not possible to achieve a complete 
elimination of background processes, which 
explains some growth in the λ score as the number 
of threads in the task increases within the physical 
cores of the processor, although, as a metric 
related only to the structure of the problem and its 
algorithm, it must be constant.

It can be stated that when calculating those 
functions where the volume of calculations is 
greater, the λ indicator increases significantly, 
this indicates that background processes outside 
the task are redistributed by the operating system 
manager and that they use shared resources 
less frequently. That is, in this way it is possible 
to indirectly evaluate active processes, including 
hidden ones, which are background for the task 
being solved, and the task itself can be a kind of 
indicator of the presence of hidden processes at 
the time of their activation.

Qualitatively similar results were obtained 
when testing the multithreading of the numerical 
integration problem. Here, the rank of the thread 
k defines for it the boundaries of the integration 
segment ak and bk:

a a
b a

N
k b

b a

N
kk k� �

�
�

�
�� �� � � � � �; ,1  k=0, 1 … N-1     (4)

As expected, there were difficulties in this 
task due to insufficient load balancing, because 
each thread was allocated an equal segment for 
integration. However, the convergence at each 
segment will be different, since it determines 
the type of integrable function, accordingly, the 
number of iterations will also vary. This causes 
the number of messages between threads 
to increase dramatically and cease to be 
predictable. This is because the task completion 
time is different for each thread, therefore 
synchronization is required through messaging 
to obtain an overall result.

Summary аnd Conclusion
1. Analysis of the evolution of the architecture 

of computer systems demonstrated, that the 
most promising is to increase the performance 
of calculations through the use of multithreading 
technologies.

2. Internal computation parallelism, as a 
prerequisite for implementing multithreading, can 
best be implemented for loops. 

3. The «Depth of Inter-Step Communication 
in the Loop» (DISCL) indicator is proposed as a 
quantitative indicator of the possibility of optimizing 
cycles in the compiler. 

4. The indicator λ is proposed as a criterion 
that characterizes the relative part of parallel 
calculations in their total volume and is invariant 
to the characteristics of the computer system. 
The possibility of applying this indicator has been 
tested experimentally.  

Table 2
Indicator λ for representation of various functions by Taylor series

Function λ(N) Function λ(N)
N=2 N=3 N=4 N=2 N=3 N=4

Exponent 0,92 0,93 0,94 Geometrical 
Series 0,93 0,95 0,96

Natural 
Logarithm 0,78 0,83 0,85 Sine 0,87 0,88 0,90

Square Root 0,65 0,68 0,70 Cosine 0,88 0,89 0,89

Table 3
Indicator λ for numerical integration methods of Newton-Cotes

Function λ(N) Function λ(N)
N=2 N=3 N=4 N=2 N=3 N=4

Of the Left 
Rectangles 0,78 0,84 0,86

Of the 
Middle 

Rectangles
0,84 0,85 0,85

Of the Right 
Rectangles 0,82 0,85 0,86 Of the 

Trapezes 0,86 0,89 0,89
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