Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2022

UDC 004.42
DOI https://doi.org/10.32782/1T/2022-3-4

Valerii PAVLOV

PhD, Associate Professor, Associate Professor at the Department of Computer Engineering, National Technical
University of Ukraine «lgor Sikorsky Kyiv Polytechnic Institute», Peremohy Avenue, 37, Kyiv, Ukraine, 03056,
paviovvg@ukr.net

ORCID: 0000-0002-4299-0319

To cite this article: Pavlov V. (2022). Ways to achieve internal parallelism of tasks in multithreaded
computing. Information Technology: Computer Science, Software Engineering and Cyber Security, 3,
27-33, doi: https://doi.org/10.32782/1T/2022-3-4

WAYS TO ACHIEVE INTERNAL PARALLELISM OF TASKS
IN MULTITHREADED COMPUTING

The article analyzes the evolution of the architecture of computer systems and identifies a way to improve
the performance of calculations. It consists in the use of multi-threaded technologies as a set of hardware, software
and methodological solutions. Multi-core processors are considered as the object of research. Each of the cores
has its own cache memory, and at this level they can be considered as computing devices with distributed memory.
At the same time, with large amounts of computation, this memory is not enough, so the shared memory is used,
that is, they are transformed into devices with a common memory. Therefore, in terms of memory access, multi-
core processors can be considered as hybrid computing devices. The goal of the work is to analyze approaches to
optimizing transformations of calculations in the form of iterative cycles with subsequent experimental verification
of their effectiveness on computers with multi-core processors. The novelty of the approach lies in the fact that
traditionally arithmetic cycles are considered in optimization problems, which is a more particular problem. The role
of the compiler is highlighted in code optimization by searching for internal parallelism. Attention is paid to cycles
as the most promising object for parallelization. The indicator of «Depth of Inter-Step Communication in the Loop»
(DISCL) is proposed, and the conditions for parallelization of cycles are formulated. The problem of load balancing
during parallelization is considered. The results of experiments on the use of MPI technology for parallelization
of some computational tasks, which use iterative cycles (sequences and numerical integration), are presented.
As a criterion for the performance of calculations, invariant to the characteristics of various computer systems,
the indicator )\ is proposed. It designates the relative part of parallel computing in their total volume.

Key words: compute performance; paralleling compiler; internal parallelism; circle optimization.

Banepit IMTABJIOB

KaHOuOam mexHidHUX Hayk, doyeHm, doueHm Kaghedpu 0b64UCIH8aIbHOI mexHikU, HauioHanbHUl mexHidHul
yHisepcumem YkpaiHu «Kuigcbkuli nonimexHidHul iHcmumym imeHi lzops Cikopcbkoz2oy, npocn. [Nepemoau,
37, Kuis, Ykpaina, 03056, paviovvg@ukr.net

ORCID: 0000-0002-4299-0319

BiobniorpacpiuHnm onuc crartTi: Masnos B. (2022). LLnaxn JOCArHEHHSA BHYTPILUHBOrO napaneniamy
3agay npu GaratonoTikoBux obuncneHHsx. Information Technology: Computer Science, Software
Engineering and Cyber Security, 3, 27-33, doi: https://doi.org/10.32782/1T/2022-3-4

WNAXU OOCATHEHHA BHYTPIWWHBbOIO NAPANENI3MY 3AOAY
NMPU BATATOMNOTIKOBUX OBYUCITEHHAX

Y cmammi npoaHarnisogaHa egornouisi apxXimekmypu KOMITIOMepHUX CUCMEM U 8U3HaYeHUU wWrsix nidguueH-
Hs1 IpodykmueHOCmi 0b4ucneHb. Bin nongeae y sukopucmaHHi mexHonozit bazamonomikoeocmi., K CyKyrnHOCMmi
anapammHux, npogpamMHux ma MemoQoso2iYHUX pileHb. Y skocmi 06’ekmy OocrniOxeHHs1 po3ansadarombcs baza-
mosdepHi npoyecopu. KoxHe 3 0ep Mae ernacHy Kel-nam’smsb, i Ha UbOMY pieHi BOHU MOXYmb po3arsdamucs,
5K 0byucnosanbHi Mpucmpoi 3 po3nodineHo nam’smmio. Y mol Xe yac, rpu eenukux obcsizax obqucrieHb uiel
nam’ssmi HedocmamHb0o, MOMy 8UKOPUCMOBYEMbCS 3a2aribHa rnam’smb, mobmo eidbysacmbcsi ix mpaHcopmauis
y Mpucmpoi 3i 3a2anbHoro nam’smmio. Tomy 6bazamosdepHi npouecopu no docmyny Ao nam’ami MoXymsb po3ansda-
mucsi 5K 2i6pudHi obyucnroeansHi NPUCMpPOI.

Memoto pobomu € aHani3 nidxodie 00 ONIMUMI3YHOYUX MEPEMBOPEHb 0bYUCTIEHb Y 8U2nsAdi imepauitiHUX UUKIie
3 HaCMyIHOK eKCcriepUMeHMasbHOK NMepPesIpKoK ix eghekmusHocmi Ha KomiTtomepax 3 6baeamosiOepHUMU POYECo-
pamu. HosusHa rioxody 3aKmo4YHa y momy, wo mpaduuyitiHo y 3adadax onmumisauii po3ansdaomscs apugpmMemuyHi

27



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2022

YUKU, wo € 6inbw cmpouweHot 3adadyero. BusHauyeHa porb KomMninsmopy 6 onmumisauii KoOy 3a paxyHOK rowyKy
8HymMpIWHLO20 naparneniamy. [NpudineHo yeaey yuknam, sk Halbinbw nepcriekmusHoMy 06°ekmy 0711 po3snaparsnersito-
8aHHs. 3arpornoHosaHuli MOKa3HUK «2r1ubiHU MiXXKpokogoeo 38’a3Ky y uukni» (FTMKL]) ma cgpopmynbosaHi ymosu 0nis
poanaparnenosaHHs Yukrie. PodansHyma npobnema banaHcy8aHHS HaBaHMaXeHHs Mpu posnapasentosaHHi. HadaHi
eKcriepumeHmaribHi pesynbmamu ro 3acmocysaHHto mexHonoaii MPI dnisi pocniaparnentogaHHsi 0esikux ob4ucrrosarib-
HUx 3alauy, Wo sukopucmosyroms imepauiliHi YUKIU (ps0u U YucerbHe iHmeapysaHHsi). Y skocmi Kpumepito npodyk-
musHocmi 0b4YucreHb, iHeapiaHMHo20 00 XapakKmepuCmMUK Pi3HOMaHIMHUX KOMITIOMEPHUX CUCMEM 3arporoHo8aHUl
MOKa3HUK ), W0 Xxapakmepu3ye 8iOHOCHY YacmKy napanerbHUx ob4uceHb y ix 3a2anbHoMy 06Cs3i.

Knro4oei cnoea: npodykmueHicmb 064UCTEHb; KOMMINIAMOP, WO po3napanernoe; 8HympiluHil napaneniam;

onmumisauis Uukris.

Urgency of the problem. For more than 50
years, industrial progress has been determined by
the level of development of computer equipment
and technologies. With the increasing amount of
information, higher and higher requirements for
the performance of computer systems are put
forward («Moore's Law» — Gordon Earle Moor,
1965). Until recently, this was achieved through the
development of the technical component, namely,
increasing the speed of information processing
in various components of computer systems.
However, today the potential of this path, for known
reasons (leakage currents, power consumption
and heat sink), has almost been exhausted and
has reached its maximum. Therefore, technologies
related to the simultaneous processing of
information by parallel devices come to the fore.
First, parallel memory banks began to be used,
and then multiprocessor systems.

Analysis ofrecentresearch and publications.
A number of publications on the topic of high-
performance computing focus on the architecture
of computing systems and their hardware
component. According to well-known Flynn's
taxonomy (Flynn Michel. J. 1966), multiprocessor
computer systems belong to the MIMD (Multiple
Instruction, Multiple Data) class. The issues
of implementation of supercomputers based on
cluster systems are most dynamically covered in
periodically published reviews (Internet-resources:
www.top500.0rg; www.nvidia.com; www.itc.ua/ua/;
www.overclockers.ua/ etc.).

The idea of creating multi-core processors, as
an evolution of the SMP architecture, is based
on a nonlinear relationship between three main
characteristics:

— clock frequency;

— power consumption and heat sink;

— compute performance.

Since the bulk of the power consumption in
the processor is dynamic power P, which is
spent on switching CMOS switches and charging
capacitors, it can be determined by the formula
(W. Wolf, 2002):

P, = CVf

(1)

28

In turn, the switching time is inversely
proportional to the applied voltage, therefore, the
switching frequency f is directly proportional to
the voltage V. This makes it possible to assert
that the power consumption of the processor P, is
proportional to the third degree of frequency f.

Empirically, it is established that when the clock
frequency is increased by 20%, the processor
performance increases by only 13%. This
phenomenon is called the «The Moore’s gap». At
the same time, power consumption will increase
by (1.2)3 times, that is, by 73%!

Such a nonlinear dependence justifies the
feasibility of replacing a single-core processor
with a multi-core processor with the same
power consumption, however, with greater total
performance.

The second part of the publications is devoted
to the issues of parallel computing software.

A kind of «basic» programming languages, the
development of which has provided support for
parallel computing, are FORTRAN and C/C++.

However, there are several basic standards for
building parallel computing processes:

POSIX Threads execution
implementation standard;

OpenMP - parallel programming standard in
a shared memory environment (SMP-systems)
(Rohit Chandra, Ramesh Menon, Leo Dagum,
David Kohr, Dror Maydan, Jeff McDonald, 2000);

MPI — a standard for the transfer of messages
between parallel executable processes in
computing systems with distributed memory, for
example, massively parallel systems, clusters
and GRID systems (William Gropp, Ewing Lusk,
Anthony Skjellum, 1999).

The latter two technologies have long been
dominant in the field of parallel computing, so let's
look at them in a little more detail.

There are their implementations for various
programming languages, which allows when
developing a program to achieve the necessary
independence from the features of the computer
system on which it will be executed.

Finally, it is possible to distinguish a large group of
publications that consider the algorithms for building

thread



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2022

parallel calculations (V.V. Voevodin, 2002; V.P. Gergel,
2009; E.N. Gordeeyv, 2011). However, only arithmetic
cycles are considered as the object of optimization,
while most numerical methods are based on iterative
cycles. In cycles of this type, the number of repetitions
is not known in advance, so it is impossible to build
a tier-parallel form of the calculation algorithm in
advance and decompose the data.

The ultimate goal of using any parallel
programming technology is to get the most
productive program. However, these technologies
themselves are essentially a set of directives that
are taken into account in one way or another at
the compilation stage. Therefore, it is the compiler
that ultimately determines the result in the form
of a machine program. There are techniques that
allow to improve the properties of grammars even
at the stage of recognizing chains of characters
and building a parse tree (V. Pavlov, 2016).

If the compiler cannot find snippets of programs
thatcanrunin parallel, then it will generate sequential
code of the machine program in this case.

The main stages of compilation are presented
in Fig.1:

COMPILER

= S\

syniax
analyzer
code
optimizer

—

=
—

lexical
analyzer
analyzer

program

machine

semantic

code
generator

source
program

Fig. 1. Stages of a compiler

When lexical, syntactic, and semantic parsing is
performed, code optimization is begun. The main
goal of optimization is to get faster and smaller code.

Code optimization can be divided into global and
local, where the latter affects only some blocks. Such
blocks include, for example, linear sections of the
program and cycles. The optimization process consists
in the application of some techniques that should lead
to the desired result — «optimizing transformations»
(Aho Alfred V., Ullman Jeffrey D, 1979).

The goal of the article is to analyze approaches
to optimizing transformations of calculations
in the form of iterative cycles with subsequent
experimental verification of their effectiveness on
computers with multi-core processors.

Presentation of the main material of the
study. A well-known proverb says that it is useless
tolook for a black catin a dark room. To paraphrase,
you can only parallelize those calculations for
which it is possible to do so. That is, initially the
algorithm for solving the problem should contain
computation, which in principle can be performed
simultaneously without compromising the result,
that is, have internal parallelism (V.V. Voevodin,

29

2002). If it is missing it will not be possible to get
the acceleration of calculations, even if there is an
unlimited number of computing devices.

This is best illustrated by the well-known
Amdahl's law (Amdahl Gene M., 1967), according
to which the acceleration of calculations due to
the use of several computing devices is possible
only in that part of the program, where parallel
computing is present. In other words, if the more of
the computation in the program can be parallelized,
then the acceleration is higher from the use of
parallel computing devices.

However, in many cases, the initial parallelism
of calculations is either hidden or absent altogether.
To identify hidden parallelism in the algorithms, it is
proposed to use the directed graph of the algorithm
(V.V. Voevadin, 2002). In this case, the number of
tiers is taken as a criterion for the effectiveness of
this algorithm. The concept of unlimited parallelism
was also formulated, which implies the presence
of an unlimited number of processors with shared
memory and instant transmission of messages
between them.

Therefore, the main direction of improving the
performance of calculations is to improve the
algorithms for executing programs

Loop optimization. Loops as a group of
repetitive calculations are inherent in almost all
programming languages and most programs. They
take a significant time, so their optimization can
significantly increase the speed of calculations.
These transformations include (Aho Alfred V.,
Sethi Ravi, Ullman Jeffrey D, 1986):

— Code motion beyond the loop;

— Removal of Induction Variables, which can
be counted;

— Replacing Complex Operations with Simpler
and Faster ones;

— Loop Unrolling;

— Loop fission (sub loops);

— Loop Inversion.

Obviously, the loop executiontime is proportional
to the number of loops and the execution time of
a single step. Therefore, the ways to reduce loop
execution time are either to reduce the number of
loops or to reduce the duration of operations at
each step.

To use parallel computing, the first method is
preferable, because it guarantees uniform distribution
and load balance on computing devices. If there is a
loop of N repetitions of calculations, then it can be
distributed to P computing devices, determining that
each will perform N/P steps of the loop.

But this is not always possible if the results
calculated at one step of the loop are used
at subsequent steps in the loop (V.P. Gergel,



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2022

V.A. Fursov, 2009). To assess this, we will use the
concept of «Depth of Inter-Step Communication
in the Loop» (DISCL), which will show the
maximum number of preceding steps in the loop,
the data from which is used in the current step.
For example, when calculating the usual sum of
a series, the DISCL is equivalent to 1, since it
is needed for calculating and adding to the sum
the previous terms only. And when calculating
the Fibonacci sequence, you need to know the
results of the last two steps, so DISCL is 2. The
value of DISCL shows the relationship between
the individual steps of the loop, the larger it is, and
the more difficult it is to carry out calculations in
parallel.

Ideally, of course, it is necessary that the
calculations at each step of the loop do not
depend at all on the results of the previous steps
and DISCL is 0. This is possible only when there
is a mathematical formula for any member of the
sequence, in which its value A_depends only on the
data known atthe beginning of the calculation (x) and
the step number n (iterative variable): A = F(x, n).
Such formulas exist for arithmetic and geometric
progressions, as well as for many other sequences.
In this case the calculation of each member of the
series is completely independent and is a local task,
hence, they can be executed in any sequence and
on any computing device, including in parallel. As
for the Fibonacci sequence, to date this problem
has not been solved, since the well-known Binet
formula gives too large an error for it.

Two more problems remain to be solved:

— load balancing of computing devices;

— transfer of results to combine them into one
amount.

The first problem is solved by distributing local
problems between parallel computing devices
according to the cyclic algorithm round-robin
(Thakur V., Kumar S., 2014). Since the volume,
and hence the time, of calculating the terms of the
series is a monotonously increasing or decreasing
function, this algorithm gives the best result.

The solution to the second problem is related
to minimizing the time on switching between
computing devices. To avoid having to synchronize
the results multiple times during the calculation
process, it would be optimal to form a local
partial sum on each computing device from those
members of the series that this device calculates.
Then the switching will be performed once only at
the very end of the calculations, when all partial
sums will be fully formed.

A similar approach is applicable to some
problems, such as numerical integration methods.
If we do not go into details of the features of each

30

method, it is highlighted their general part: the
entire integration interval is divided into segments,
on each of which numerical integration is
implemented. The total value of the integral is then
defined as the sum of the results at each segment.
In doing so, to start calculations, it is enough to
know the integrable function and the boundaries of
a particular interval. That is, the calculation of each
partial amount is completely independent of the
others, hence, the integration of segments can be
performed in any sequence, as well as in parallel
on several computing devices.

Solving the load balancing problemin this case s
much more complicated. All methods of Numerical
Integration of Newton-Cotes quadrature rules are
iterative, with the number of iterations depending
on the required accuracy. The greater the number
of segments into which the initial integration interval
is divided, the more accurate the interpolation, the
smaller the integration error. If Runge's rule (Runge
Karl, 2019) is used to estimate the accuracy of
calculations, the number of calculations performed
on different segments will be different too. To
equalize the volume of calculations, it is advisable
to use the Gauss-Legendre method (Iserles Arieh,
1996) with unequal lengths of segments, however
it is applicable to an odd number of nodes only and
therefore to an odd number of parallel threads.

Minimization of switching time is also achieved
by sending the result from each computing device
to the master device one, where summation is
performed in any sequence of the results obtained.

Experimental testing. The experimental test
was performed on multi-core computers with 4-core
processors Intel i3-10xxx, i3-7xxX, i5-8xxXx, i5-6xxx
and etc. To do this, the computers of students who
participated in the testing his program were used.
At the same time, to study multithreading as a
consequence of multi-core, hyper-threading mode
was disabled. The operability of the programs
was checked by testing them on test cases,
however, the main objective was to evaluate the
temporal characteristics of the programs and their
subsequent analysis.

MPI technology was used to implement
multithreading because each kernel has its own
cache memory L1 and L2, that is, with relatively
small amounts of data refers to devices with
distributed memory.

Internal parallelism is achieved by the fact
that the thread rank is used in calculations as a
parameter, due to which the universality of program
execution by any core was achieved.

For example the sum of the members of a
series is divided into two sums:



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2022

M
N N-1

S () :éf(x,i) =55 1(ok) 2)

The internal sum iterates through the threads of N
computing devices, and the external sum — iterates,
the number of which has decreased by N times.

As an initial task, calculations of the sums of
Taylor decomposition series for various functions
were simulated. Since the mathematical model
of calculations was implemented in the form
of iterative circles, the amount of calculations
was determined by the required accuracy of the
result. Thus, an array was obtained of temporary
estimates of program execution for various
mathematical functions, which were calculated
with varying accuracy on different computers with
multi-core processors, where the number of cores
used in the calculations also changed.

Since all the processors that were used in the
experiment had completely different performance
characteristics, then there was no sense in
comparing the resulting time estimates. The
obtained estimates were processed by statistical
methods, and their average values were used to
calculate the indicator A, which is proposed as an
indicator of the effectiveness of multithreading.

Indicator A characterizes the relative part of parallel
calculations in their total number and used in Amdahl's
formula (Amdahl Gene M., 1967). This indicator was

Activities =] Terminal =

File Edit View 5Search Terminal Help

nazar@nazar-Inspiron-13-7359:~/Documents [

process 8 of 1
avg_time: 55.347000
inazar-Inspiron-13-7359
of 2
of 2
o ! 46.328000
nazargnazar-
process i
process
Process
avg_time: 28000
nazar@nazar-Inspiron-13-7359:~/D¢

3
ql
8

Inspliron-13-7359I~/Document

chosen because it is more dependent on the on the
internal parallelism of the program algorithm rather
than the characteristics of the computing device on
which the program is implemented.
To calculate the indicator A, a transformation
based on Amdahl's law was used:
_1-1/P,
C1-1/N

©)

where P —acceleration due to N parallel computing
devices;
N — number of parallel computing devices.

If for the same mathematical problem the
calculations occur on the same computer, then we can
get the function A(N). If the value of A(N)increases, it
means that part of the parallel calculations increases,
if it decreases, then the serial.

For example, for the results presented in Fig. 2,
we get the following Avalues:

Table 1
Indicator ) for temporal estimates
of the calculation of the hyperbolic cosine
with an accuracy of 103

Number of cores (N) Time (ns) A
1 65.347 -
2 46.328 0.5829
3 36.828 0.6546
4 29.039 0.7408

runner .s

runner .

runner .

runner.s

Fig. 2. Example of the formation of temporal estimates when calculating the value
of the hyperbolic cosine with an accuracy of 10

31



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2022

Table 2
Indicator ) for representation of various functions by Taylor series
. A(N) . A(N)
Function N=2 N=3 N=4 Function N=2 N=3 N=4
Geometrical
Exponent 0,92 0,93 0,94 Series 0,93 0,95 0,96
Natural .
Logarithm 0,78 0,83 0,85 Sine 0,87 0,88 0,90
Square Root 0,65 0,68 0,70 Cosine 0,88 0,89 0,89
Table 3
Indicator A for numerical integration methods of Newton-Cotes
. A(N) . A(N)
Function N=2 N=3 N=4 Function N=2 N=3 N=
Of the
SrtheLeft | g 7 0,84 0,86 Middle 0,84 0,85 0,85
9 Rectangles
Of the Right Of the
Rectangles 0,82 0,85 0,86 Trapezes 0,86 0,89 0,89
Thus, we get a tool that allows us to compare _ _
g P a,=a+2 2k b, =2 2(k1) k=0, 1. N-1 (4)

the efficiency of multithreaded processing when
solving, for example, various mathematical tasks
on one computer or, conversely, the same task on
computers with different characteristics.

To increase the repeatability of the result on the
computers where the test was performed, almost all
applications stopped, except for those that formed
the software environment. However, there was
some fluctuation in the indicators of the program
execution time, so averaging was carried out, both
in one experiment and the results of experiments.
However it was not possible to achieve a complete
elimination of background processes, which
explains some growth in the A score as the number
of threads in the task increases within the physical
cores of the processor, although, as a metric
related only to the structure of the problem and its
algorithm, it must be constant.

It can be stated that when calculating those
functions where the volume of calculations is
greater, the L indicator increases significantly,
this indicates that background processes outside
the task are redistributed by the operating system
manager and that they use shared resources
less frequently. That is, in this way it is possible
to indirectly evaluate active processes, including
hidden ones, which are background for the task
being solved, and the task itself can be a kind of
indicator of the presence of hidden processes at
the time of their activation.

Qualitatively similar results were obtained
when testing the multithreading of the numerical
integration problem. Here, the rank of the thread
k defines for it the boundaries of the integration
segment a,and b, :

As expected, there were difficulties in this
task due to insufficient load balancing, because
each thread was allocated an equal segment for
integration. However, the convergence at each
segment will be different, since it determines
the type of integrable function, accordingly, the
number of iterations will also vary. This causes
the number of messages between threads
to increase dramatically and cease to be
predictable. This is because the task completion
time is different for each thread, therefore
synchronization is required through messaging
to obtain an overall result.

Summary and Conclusion

1. Analysis of the evolution of the architecture
of computer systems demonstrated, that the
most promising is to increase the performance
of calculations through the use of multithreading
technologies.

2. Internal computation parallelism, as a
prerequisite for implementing multithreading, can
best be implemented for loops.

3. The «Depth of Inter-Step Communication
in the Loop» (DISCL) indicator is proposed as a
quantitative indicator of the possibility of optimizing
cycles in the compiler.

4. The indicator A is proposed as a criterion
that characterizes the relative part of parallel
calculations in their total volume and is invariant
to the characteristics of the computer system.
The possibility of applying this indicator has been
tested experimentally.

32



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2022

BIBLIOGRAPHY:

1. Gordon Earle Moor. Cramming more components onto integrated circuits. Electronics Magazine. 1965.
vol. 39(8). P. 114-117.

2. Flynn Michel. J. Very high speed computers. IEEE. 1966. 54(12). P. 1901 - 1909.

3. Wolf, Wayne Hendrix. Modern VLSI Design, 4th ed. Boston: Prentice Hall, 2002. 638 c.

4. leprenb B.IM. ®ypcos B.A. Jlekuun no napannencHbiM BbluMcneHusm. Camapa: M3g-so Camap. roc.
aspokocMm. yH-Ta, 2009. 164 c.

5. l'opoees 3.H. BeegeHue B Teoputo cnoxHoctu anroputmos. M: MI'TY nm. H.3.BaymaHa, 2011. 49 c.

6. Chandra Rohit, Menon Ramesh, Dagum Leo, Kohr David, Maydan Dror, McDonald Jeff. Parallel Pro-
gramming in OpenMP. Morgan Kaufmann, 2000. 229 c.

7. Gropp William, Lusk Ewing, Skjellum Anthony. Using MPI: Portable Programming with the Message
Passing Interface. The MIT Press, 1999. 367 c.

8. BoesoawH B.B., BoeoawH Bn. B. MNapannencHble Bbiumcnenus. Netepbypr: BXB, 2002. 608 c.

9. Amdahl Gene M. The validity of the single processor approach to achieving large-scale computing capa-
bilities. In Proceedings of AFIPS Spring Joint Computer Conference, Atlantic City, N.J., AFIPS Press. 1967.
30. P. 483-85.

10. Pavlov Valerii. Nullifying rules influence on speed in context free grammar LL(1). Journal of Theoretical
and Applied Computer Science. Polish Academy of Sciences, Gdansk Branch, Computer Science Commis-
sion. 2016. 2. P. 3-15.

11. Aho Alfred V., Ullman Jeffrey D.. The theory of parsing, translation and compiling, Volume 2. Pren-
tice-Hall, 1973. 542

12. Aho Alfred V., Sethi Ravi, Ullman Jeffrey D. Compilers: Principles, Techniques, and Tools. ADDI-
SON-WESLEY, 1986. 796 c.

13. Thakur V., Kumar S., Load Balancing Algorithm An Analytical Study. The IUP Journal of Computer
Sciences. 2014. VIII(2). P. 25-34.

14. Runge Karl. Analytische Geometrie der Ebene. Leipzig: B.G. Teubner, 1908. 217 c.

15. Iserles Arieh, A First Course in the Numerical Analysis of Differential Equations. Cambridge University
Press, 1996. 480 c.

REFERENCES:

1. Moor G. E. (1965). Cramming more components onto integrated circuits. Electronics Magazine, vol.
39(8): 114-117. [in English].

2. Flynn M. J. (1966). Very high speed computers. IEEE, 54(12). 1901-1909. [in English].

3. W. Wolf. (2002). Modern VLSI Design. Fourth Edition. Prentice Hall.[in English].

4. Gergel V.P., Fursov V.A. (2009). Lektcii po parallelnym vychisleniiam. Samara: Izdatelstvo Samarskogo
gosudarstvennogo aerokosmicheskogo universiteta. [in Russian].

5. Gordeev E.N. (2011). Vvedenie v teoriiu slozhnosti algoritmov. M: MGTU im. N.E.Baumana. [in Russian]

6. Chandra R., Menon R., Dagum L., Kohr D., Maydan D., McDonald J. (2000). Parallel Programming in
OpenMP. Morgan Kaufmann. [in English].

7. Gropp W., Lusk E., Skjellum A. (1999) Using MPI: Portable Programming with the Message Passing
Interface. The MIT Press. [in English].

8. Voevodin V.V., Voevodin VI. V. (2002). Paralleinye vychisleniia. Peterburg: BHV [in Russian].

9. Amdahl Gene M. (1967). The validity of the single processor approach to achieving large-scale computing
capabilities. In Proceedings of AFIPS Spring Joint Computer Conference, AFIPS Press, 30, 483-485. [in English].

10. Pavlov Valerii. (2016). Nullifying rules influence on speed in context free grammar LL(1). Journal of
Theoretical and Applied Computer Science. Polish Academy of Sciences, Gdansk Branch, Computer Science
Commission, 2, 3-15. [in English].

11. Aho A. V., Ullman J. D. (1973). The theory of parsing, translation and compiling, Volume 2. Pren-
tice-Hall. [in English].

12. Aho A. V., Sethi R., Ullman J. D. (1986) Compilers: Principles, Techniques, and Tools. ADDISON-WES-
LEY. [in English].

13. Thakur V., Kumar S. (2014). Load Balancing Algorithm. An Analytical Study. The IUP Journal of Com-
puter Sciences, VIlI(2), 25-34. [in English].

14. Runge K. (2019) Analytische Geometrie der Ebene. Wentworth Press. [in English].

15. Iserles Arieh (1996). A First Course in the Numerical Analysis of Differential Equations, Cambridge Uni-
versity Press [in English]

33



