
40

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

UDC 614.2+574/578+004.38
DOI https://doi.org/10.32782/IT/2023-4-5

Oleksandr LYTVYNOV
Candidate of Technical Sciences, Associate Professor, the Faculty of Physics, Electronics and Computer
Systems, Oles Honchar Dnipro National University, 72, Haharina Ave, Dnipro, Ukraine, 49000,
lytvynov@ffeks.dnu.edu.ua
ORCID: 0000-0001-7660-1353

Dmytro HRUZIN
Master, Postgraduate Student, the Faculty of Physics, Electronics and Computer Systems, Oles Honchar
Dnipro National University, 72, Haharina Ave, Dnipro, Ukraine, 49000, hruzin_dl@ffeks.dnu.edu.ua
ORCID: 0009-0004-8534-2559

To cite this article: Lytvynov, O., Hruzin, D. (2023). Metody optymizatsii zavantazhennia ta onovlennia
vebstorinok za dopomohoiu khmarnykh tekhnolohii [Methods for optimizing the loading and updating of
web pages using cloud technologies]. Information Technology: Computer Science, Software Engineering
and Cyber Security, 4, 40–50, doi: https://doi.org/10.32782/IT/2023-4-5

METHODS FOR OPTIMIZING THE LOADING AND UPDATING OF WEB PAGES
USING CLOUD TECHNOLOGIES

An essential component of modern systems built on cloud technologies, which determines the performance
and efficiency of system operation, is caching methods and technologies. For systems that provide static information
to end-users, technologies such as SSG (Static Site Generation) and SSR (Server-side Rendering) are applied in
building the client side. SSG is typically used for pages with a very low frequency of content changes, as modifying
the content on one page requires rebuilding the entire site. To cache SSR application pages, the use of a cache
proxy server is recommended. An example of implementing such an approach is Next.js Serverless. However,
because the Next.js Serverless technology employs a weak caching model, delivering up-to-date data to end users
often takes a significant amount of time, which can negatively impact user interaction.

This work is dedicated to addressing this problem. The paper proposes a flexible and efficient solution for
generating and caching static pages using a cache proxy server and invalidation for data updates by the cache proxy
server upon each change in the system's state. The integration of this solution into complex information systems is
explored, and a performance comparison and evaluation of data delivery to end-users are conducted.

The results of the conducted experiment demonstrate that the proposed approach solves the identified problem
without compromising the performance compared to the Next.js Serverless approach.

Key words: Cloud technologies, Server Side Rendering, Static Web Pages, Edge caching, Cache Proxy Server,
Domain Driven Design.

Oлександр ЛИТВИНОВ
кандидат технічних наук, доцент, факультет фізики, електроніки та комп’ютерних систем,
Дніпровський національний університет імені Олеся Гончара, просп. Гагаріна, 72, м. Дніпро, Україна,
49000, lytvynov@ffeks.dnu.edu.ua
ORCID: 0000-0001-7660-1353

Дмитро ГРУЗІН
магістр, аспірант, факультет фізики, електроніки та комп’ютерних систем, Дніпровський
національний університет імені Олеся Гончара, просп. Гагаріна, 72, м. Дніпро, Україна, 49000,
hruzin_dl@ffeks.dnu.edu.ua
ORCID: 0009-0004-8534-2559

Бібліографічний опис статті: Литвинов, O., Грузін, Д. (2023). Методи оптимізації завантаження
та оновлення вебсторінок за допомогою хмарних технологій. Information Technology: Computer
Science, Software Engineering and Cyber Security, 4, 40–50, doi: https://doi.org/10.32782/IT/2023-4-5

41

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

МЕТОДИ ОПТИМІЗАЦІЇ ЗАВАНТАЖЕННЯ ТА ОНОВЛЕННЯ ВЕБСТОРІНОК
ЗА ДОПОМОГОЮ ХМАРНИХ ТЕХНОЛОГІЙ

Важливою складовою сучасних систем, побудованих на базі хмарних технологій, від якої залежить про-
дуктивність та ефективність функціонування системи, є методи та технології кешування. Для ряду
систем, які надають статичну інформацію кінцевому користувачеві, для побудови клієнтської частини
застосовуються такі технології, як SSG (Static Site Generation), SSR (Server-side Rendering). SSG, як пра-
вило, застосовується для сторінок, частота зміни вмісту яких дуже низька, оскільки для зміни вмісту на
одній сторінці потрібне перезбирання всього сайту. Для кешування сторінок SSR-додатків пропонується
використовувати кеш-проксі-сервер. Прикладом реалізації такого підходу може служити Next.js Serverless.
Проте через те, що технологія Next.js Serverless використовує слабку модель кешування, доставка акту-
альних даних кінцевим користувачам часто займає значну кількість часу, що може негативно вплинути на
взаємодію з користувачем.

Вирішенню цієї проблеми присвячена дана робота. У роботі пропонується гнучке та ефективне рішен-
ня для генерації та кешування статичних сторінок з використанням кеш-проксі-сервера та інвалідації
для актуалізації даних кеш-проксі-сервера при кожній зміні стану системи. Досліджено інтеграцію цього
рішення в складні інформаційні системи, проведено порівняння продуктивності та оцінку доставки даних
кінцевому користувачеві.

Результати проведеного експерименту показують, що запропонований підхід вирішує поставлену про-
блему, не уступаючи в продуктивності підходу Next.js Serverless.

Ключові слова: хмарні технології, рендеринг на боці сервера, статичні вебсторінки, Едж Кешування,
Кеш Проксі-сервер, Доменно-орієнтований Дизайн.

The trend of migrating businesses to the cloud
emerged long ago and has been resilient for quite
some time. Correspondingly, cloud technologies
continue to evolve. Currently, individuals are not
just allowed to rent space for their servers but can
gradually purchase it, dynamically scaling compu-
tational power both vertically and horizontally as
needed.

The primary advantage of cloud technolo-
gies (Thakur, 2022) lies in their flexibility. Users
no longer need to worry about physical hardware,
its maintenance, and updates. They can focus on
their business, leaving all technical aspects in the
hands of the cloud provider. This also reduces
operational costs and enhances efficiency, allow-
ing companies to concentrate on the development
and implementation of new products and services.

With each passing year, cloud technologies
become increasingly accessible. The cost of ser-
vices offered makes them viable even for novice
startups. Moreover, major conglomerates such as
Amazon (2), Google (3), and Microsoft (4) provide
various discounts and free services up to spe-
cific credit amounts to attract potential clients. In
addition, user interfaces are evolving, enabling
non-technical users to leverage cloud services.
While this, on one hand, reduces the skill require-
ments for DevOps personnel, on the other hand,
it necessitates their familiarity with the specialized
knowledge of using a specific console. Given the
multitude of options available, training and even
user certification programs are conducted to guide
users in effectively utilizing cloud systems.

Talking about cloud services and web perfor-
mance optimization, special attention is given to

data caching (Chockler, 2011: pp. 1-11)(Choi,
2020: pp. 98-110)(Berger, 2014: pp. 2-23). Cloud
platforms provide a range of caching mechanisms,
including in-memory caches, distributed caches,
and cache on the side of content delivery net-
works (CDNs). In-memory caches like Redis (8)
and Memcached (Fukuda, 2014) prove particularly
effective in accelerating data retrieval by storing
frequently accessed data in RAM, enabling ultra-
low-latency access. Distributed caching solutions,
such as Amazon Elasticache (10), extend this
capability across multiple nodes, further enhancing
the speed and reliability of data access. CDNs, on
the other hand, facilitate the efficient distribution of
content and data to multiple geographic locations,
reducing latency for users and researchers world-
wide. These caching techniques are invaluable in
scenarios where real-time access to data and ser-
vices is critical.

Caching in cloud services not only enhances
the speed and efficiency of scientific computations
but also contributes to cost savings. By reducing
the amount of data transfer and computational
overhead, researchers can optimize resource uti-
lization, ultimately leading to lower cloud service
bills. Moreover, caching enables the reuse of pre-
viously computed results, minimizing redundant
calculations and improving the sustainability of
research projects.

Another technology that significantly increases
cloud performance is Edge caching (Wu, 2021).
The critical component of content delivery and
data distribution networks is designed to enhance
the speed and efficiency of content delivery to
end-users. Unlike traditional caching, which is typ-

42

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

ically centralized on a single server or data center,
edge caching decentralizes the caching process,
bringing content closer to the end-users by placing
cached data on edge servers distributed across
various geographic locations. This approach signif-
icantly reduces the latency and congestion associ-
ated with serving content from a centralized loca-
tion, leading to faster and more reliable access.

The best performance of edge caching is
achieved when a website is developed using
static web page technology. Pre-rendered pages
are cached at the edge, ensuring rapid and effi-
cient functionality. The concept of pre-generating
static web content (Large, 2022)(Yang, 2022),
often referred to as "static web pages", predates
the modern static site generators (Jiang, 2010:
pp: 588-591) that we use today. It's challenging
to attribute this concept to a single individual, as
it evolved gradually as the web itself developed.
Static web pages have been used since the early
days of the World Wide Web.

While the concept of static web pages was
established early in the history of the web, the
specific tools and technologies that we now asso-
ciate with modern static site generators were
developed later. Tools like Jekyll (15), Eleventy
(16), Gatsby (17), and others were created to
automate and simplify the process of generating
static websites. The idea is to generate all possi-
ble web pages in advance and cache them. This
provides significant performance improvement for
read requests. However, this approach provides a
low level of flexibility. The main con of the solution
is when content does change, the site must be
rebuilt to have these changes reflected. In prac-
tice, some hybrid approaches work. For example,
as described in (Vepsäläinen, 2022), static and
dynamic parts of the page are kept separately.
The JSON for site definition is leveraged on the
client side for editing, bridging the continuum’s
ends.

Another approach is the Single Page Appli-
cation (SPA) (Fink, 2014), a web application that
loads a single HTML page and dynamically updates
its content as users interact, eliminating the need
for a full page reload. This development para-
digm has gained popularity due to its enhanced
user experience, faster navigation, and reduced
server load. However, a notable drawback of this
approach is that the page renders after the initial
load, introducing a certain delay before displaying
data to the user. Additionally, this can impact page
indexing by search engine robots, as dynamically
generated content is ignored by some bots, nega-
tively affecting Search Engine Optimization (Gudi-
vada, 2015: pp. 67-76).

Another option for building web clients for com-
plex information systems is Server Side Render-
ing (SSR) (Sun, 2019: pp. 191-217). When a user
requests a page from a server, the server deter-
mines which page to render and processes the
request, including any data fetching or computa-
tions needed to render the page. This may involve
querying a database, making API requests, or
other server-side logic. The server uses a tem-
plate engine (e.g., Handlebars (22), Pug (23),
etc.) to render the HTML template with the data
retrieved in the previous step. The resulting HTML
is a fully formed web page, often including the
content, layout, and initial data. The server sends
the complete HTML page, along with any associ-
ated assets like CSS and JavaScript files, to the
client's browser. Once the initial HTML is loaded
in the browser, any client-side JavaScript can take
over and enhance the page's interactivity. The
process repeats when a user navigates to another
page within the application. A new request is sent
to the server, which generates the HTML for the
new page, and the client-side JavaScript updates
the page content.

In practice, a common approach involves
employing both methods for different parts of the
system. Static pages, which do not require fre-
quent updates, are generated using a generator
and cached, while web pages in need of frequent
updates are based on SSR or SPA approaches.
Although these solutions work sufficiently, con-
cerns regarding performance and content updates
persist. Additionally, it is often a challenge for
developers to find the right balance, determining
which pages to generate and which to render in
real time.

Methods exist to optimize page load time when
using the SSR approach, such as employing a
multi-level cache (Vilas, 2006: pp. 713-720) and
a cache proxy server (Wang, 1999). The system's
operation using these methods is illustrated in
Fig. 1. When a client sends a request for a page,
the request is received by the CDN service, and
if an up-to-date version of the page is present, it
is delivered to the client. If the page is not pres-
ent or its time-to-live has expired, the request is
redirected to the cache proxy server. This cache
has a larger size, and the time-to-live for pages
can be longer. If the cache proxy server also lacks
an up-to-date version of the page, the page is
requested from the server, which renders it and
sends it to the client, also saving the updated ver-
sion on the cache proxy server.

An example of implementing such an approach
can be found in the Next.js Serverless solution (26)
(27)(28). This framework is designed to create a

43

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

serverless architecture (Rajan, 2018), which offers
certain advantages over the traditional server archi-
tecture for certain systems. The concept involves
a resource distribution approach. In the case of
the Next.js (30) SSR framework, the conventional
server, which requires scaling and continuous
operation with associated costs, is replaced with
a storage solution for static files (AWS S3) and a
stateless worker that can be invoked on-demand
(AWS Lambda). The S3 server in this system
essentially serves as a cache proxy server, with
AWS CloudFront as the CDN service. Implemen-
tation of a system based on the Next.js Serverless
framework is depicted in Fig. 2.

This approach ensures a high level of scalabil-
ity, enabling the parallel rendering of a vast num-
ber of pages. However, the question of what cache
model, weak or strong, to use remains. Cache
invalidation operations on CDNs provided by cloud
platforms can be relatively costly, especially with
a large number of calls. Therefore, it is advisa-
ble to avoid cache invalidation unless necessary.
Another consideration is data freshness in case a
weak cache model is used.

Next.js Serverless approach utilizes a weak
caching model, delivering up-to-date data to
end-users often takes a considerable amount of
time, which can negatively impact user experience.

Task definition. The solutions mentioned
above are aimed at systems whose data state
changes not too frequently but is not entirely static
either.

The example can be illustrated by the health
care system developed by a team from DBB Soft-
ware company (31). The system aims to provide
users with public profiles of doctors and their prac-
tices, along with reviews about these doctors. The
system undergoes changes when content man-
agers add or modify doctor profiles or their prac-
tices, and when patients add reviews. These are
not real-time operations, and the update frequency
of the page does not exceed tens of changes per
hour.

One of the possible architectural solutions con-
sidered for building such a system was the gen-
eration of static pages. However, despite the high
performance of this approach, especially when
using edge caching, such a solution was rejected

 Fig. 1. Cache Proxy server approach

 Fig. 2. The diagram of components for the Next.js Serverless approach

44

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

at the planning stage. The challenge with the page
generation approach lies in the need for rebuilding
and redeploying all pages to make any changes.
Using this approach in the current scenario would
be inconvenient, as the rebuilding process takes
time, and rebuilding the entire site multiple times a
day would be resource-intensive.

The first solution implemented was the SSR
Next.js server. SSR renders pages in real-time,
and all system changes are reflected on the cli-
ent almost immediately after the system data is
updated. However, this approach comes at the cost
of performance, as each page request involves
one or more API requests, leading to increased
page load time. Even with the use of CDN cach-
ing, the average page load speed for some pages
reached up to 1700 ms.

Using the Cache Proxy Server with a weak
caching model partially addresses this issue by
introducing a second level of managed cache.
However, on some pages, data may remain
unchanged for months, while on others, it is con-
stantly added.

For example, there is a doctor who obtained
the last license several years ago and only treats
his regular patients. Such a doctor's page will not
be updated for months or even years. On the other
hand, some doctors ask their patients to leave
reviews and constantly receive new certificates. The
pages of these doctors are updated multiple times
per day. By default, the cache TTL is set the same for
all pages. To ensure users receive up-to-date data,
the TTL value should be set close to the update fre-
quency of the most frequently updated pages.

One solution to this problem could be to
implement logic on the cache proxy server that

is responsible for grouping pages based on their
update frequency. For each group, set a TTL that
is most suitable for that specific group. However,
with this solution, the dynamics of data changes
need to be taken into account. For example,
a doctor may start asking patients to leave
reviews, and a page that used to change once
a year will suddenly start changing several times
a day. Considering the high complexity and low
level of reliability, this solution is not considered
effective.

This article aims to find an effective solution
for the flexible response of the page generation
module to changing data. It also provides a perfor-
mance comparison and evaluates the delivery of
updated data to the end user.

Main part. Similar to the Cache Proxy Server
approach described above, we also propose ren-
dering and storing pages in a static repository but
using a strong caching model and storing not just
already requested pages, but all possible pages in
advance. The freshness of data in the storage is
ensured by regenerating pages with each change
(or some amount of changes) in the system that
concerns these pages. One or more handlers sub-
scribed to events about changes in the system's
data, determine which pages are affected by these
changes, and invoke the page renderer service
to update these pages in the cache proxy server.
After the pages are successfully rendered and
saved, a request for invalidating the CDN cache is
sent (Fig. 3).

For example, in Domain-Driven Design (DDD)
systems (Evans, 2004) (Fig. 4), one of the han-
dlers subscribed to changes in the aggregate's
state can perform this function.

Fig. 3. Update the Page flow

45

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

This approach integrates particularly well with
an Event Sourcing system (Chamberlain, 2017),
as the implementation of sending events upon
changing the state of an aggregate forms the foun-
dation of such systems. The pre-rendered page
essentially serves as a projection in this context.

In Fig. 5, the flow of state change in the event-
sourced system is depicted. A change request
transforms into an understandable message

for Domain (command), which is validated and
enters the domain through the command bus. The
domain comprises command handlers, a reposi-
tory, and an aggregate description. The command
handler requests the repository for the aggregate
based on the ID specified in the command. The
repository, relying on the aggregate description,
creates an empty object of the required aggre-
gate type, queries the event store for all events

Fig. 4. Sequence diagram of successful DDD change request flow

Fig. 5. Event source approach with Page Generator

46

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

related to the aggregate, replays them on the
new object, and passes the resulting aggregate
to the command handler. The command handler,
using the aggregate's methods, modifies its state.
Upon the state change of the aggregate, multiple
events are generated. These events are sent to
the repository, saved in the event store, and an
acknowledgment response is sent to the client,
indicating that the source of truth (event store)
of the system has been successfully changed,
and all other parts of the system will be eventu-
ally updated. Subsequently, the events are sent to
the event bus, notifying numerous handlers about
the system change. One such handler determines
which pages need to be updated based on the dis-
patched events, triggers the page generator, and
invalidates the cache when pages are updated in
the Cache Proxy Server.

When a user's browser sends a request to
retrieve a page, this request goes to the CDN,
which in turn fetches data from the repository and
serves the pre-rendered page to the client.

In case the requested page does not exist in
the repository, the request is redirected to the gen-
erator, which renders the missing page, serves it to
the client, and subsequently stores it in the storage
(Fig. 6). Since the proposed architecture uses a
strong caching model, such cases may occur only
under normal system operation when requesting a
new page that has not been rendered by the sys-
tem since the last update.

The described system above has been imple-
mented and deployed in a live project. Fig. 7
shows the component diagram of the implemen-
tation of this system based on AWS services and
CQRS architecture.

This approach allows generating the necessary
pages and invalidating the cache only in situations
where it is justified by changes in the system. In
scenarios where the system undergoes frequent
changes, this approach can be resource-intensive.
To enhance scalability, it is advisable to utilize an
AWS Lambda function as a hosting environment
for the renderer. This solution enables the paral-

Fig. 6. Sequence diagram Request prerendered Page

47

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

lel invocation of multiple renders when necessary,
without incurring server maintenance costs during
periods of frequent system changes.

The main concern with this solution could be
the quantity and frequency of cache invalida-
tion requests, as a large number of requests can
become financially burdensome. This issue is
addressed by an additional service that is invoked
instead of direct invalidation. This service accumu-
lates a predefined number of invalidation requests,
aggregates them, removes duplicates, and invali-
dates all necessary pages with a single request.
Such invalidation can be triggered either upon
reaching a certain number of invalidation requests
or when a specified timeout elapses if the request
pool is not empty. This solution has also been
implemented. A timeout of 1 hour and a pool size
of 100 pages have been set. For the developed
system, this results in approximately 200,000
CDN cache invalidations per month for a thousand
pages under standard system load. Given the
prices for CloudFront invalidation (34), this costs
$1000 per month.

Methods. To assess the performance of the
solutions in this study, the average read request
time for pages with different amounts of content
is measured. The measurements were conducted
on a real system using an analytical algorithm that,
upon each page load not from the browser cache,
sent load duration statistics to the statistics server.

Experiment. The experiment was conducted
based on the DBB Software company's (31) pro-
prietary platform, which provided the necessary
infrastructure and tools for data collection and
analysis. This platform offered essential capabil-
ities for our research, ensuring the accuracy and
reliability of our experimental results. For a typical
test system, as described above, the problem was
solved using three different methods by two mid-
dle-level developers.

This approach significantly accelerates the
delivery of up-to-date data to end users by invalidat-
ing the cache immediately after a system change
rather than waiting for its expiration. In other
words, pages of doctors who regularly receive new
certificates or have new reviews from their patients
will be updated regularly, while pages, where new
data does not appear for months, will not undergo
a rerender.

Another question is how the proposed mod-
ification affects performance compared to other
approaches. The average page load time for a
real website with varying amounts of content was
measured using three considered approaches:

–	 SSR application using Next JS React frame-
work, hosted on AWS Elastic Beanstalk (35) M2
instance.

–	 Cache Proxy Server with a weak caching
model approach as Next JS Serverless realization,
hosted on AWS Lambda function.

Fig. 7. Component diagram

48

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

–	 Custom implementation of suggested
approach on AWS Lambda function with a sub-
scription to system events.

From Table 2, it can be seen that the proposed
approach, and the Cache Proxy Server with a weak
caching model, significantly reduce page load time
compared to the pure SSR approach. This is logi-
cally explained by the fact that an SSR application
renders the page every time if it is not in the CDN
cache, and the CDN cache cannot store pages that
quickly become outdated. The proposed approach
is not inferior in speed to Cache Proxy Server with
a weak caching model, even showing a slight per-
formance improvement. This is because, using
the weak cache model, the system requests page
rendering upon user demand when the page's
time-to-live is considered outdated. The proposed
approach updates the data in the cache when the
system state changes and assumes the presence
of the page in the page storage. Thus, rendering
upon user request occurs only when the data is not
in the cache, which, under normal system opera-
tion, should not happen.

A drawback of the proposed approach is its
considerable implementation complexity. The
Cache Proxy Server with a weak caching model

has a similarly high level of complexity, but Next.
js Serverless provides a ready-made implemen-
tation that can be easily used for one's system.
Similarly, the proposed approach offers a high
degree of reusability. Once implemented for one
system, it can be encapsulated into a separate
module and reused for other systems with rela-
tively small effort.

Summary. The page load time and timely deliv-
ery of up-to-date data significantly impact user
experience and are critical indicators in assessing
system performance from the end user's perspec-
tive. This article explored approaches to organiz-
ing the frontend part of the system and optimiz-
ing page load time for systems whose data state
changes not too frequently but is not entirely static.
Additionally, a modification to one of these meth-
ods was proposed, which does not lag in page
load speed compared to existing approaches and
speeds up the delivery of up-to-date data to end
users. Examples of implementing the proposed
approach for an event source and a standard
DDD system were described. An experiment was
also conducted, demonstrating that the proposed
approach, for a specific type of system, performed
no worse than existing ones.

BIBLIOGRAPHY:
1.	Thakur N. Singh A. Sangal A.L. Cloud services selection: A systematic review and future research

directions. Computer Science Review. Volume 46, 2022. Doi: 10.1016/j.cosrev.2022.100514.
2.	Cloud computing services – Amazon Web Services. URL: https://aws.amazon.com.
3.	Google Cloud console. URL: https://console.cloud.google.com.
4.	Azure Cloud Services. URL: https://azure.microsoft.com/en-us/products/cloud-services.
5.	Chockler G. Laden G. Vigfusson Y. Design and implementation of caching services in the cloud, 2011.

Pages: 1 – 11. DOI:10.1147/JRD.2011.2171649.
6.	Choi J. Gu Y. Kim J. Learning-based dynamic cache management in a cloud. Journal of Parallel and

Distributed Computing. Volume 145, 2020. Pages: 98-110. DOI: 10.1016/j.jpdc.2020.06.013.
7.	Berger D.S. Gland P. Singla S. Ciucu F. Exact analysis of TTL cache networks. Performance Evaluation.

Volume 79, 2014. Pages 2-23. DOI: 10.1016/j.peva.2014.07.001.
8.	Redis. URL: https://redis.io.

Table 1
Different update frequency issue solving

SSR Cache Proxy Server
with a weak caching model

Suggested
approach

Issue solved Yes No Yes

Table 2
Average page load time

Page size
time, ms

SSR Cache Proxy Server
with a weak caching model

Suggested
approach

9 Mb 1782 827 799
5 Mb 496 93 89
2 Mb 301 61 55

49

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

9.	Fukuda E.S. Caching memcached at reconfigurable network interface. Conference: IEEE International
Conference on Field Programmable Logic and Applications (FPL), 2014. DOI: 10.1109/FPL.2014.6927487.

10.	Elasticache – AWS. URL: https://aws.amazon.com/elasticache.
11.	Wu H. Fan Y. Wang Y. Ma H. Xing L. A Comprehensive Review on Edge Caching from the Perspective

of Total Process: Placement, Policy and Delivery, 2021. Doi: 10.3390/s21155033.
12.	Large D. What is a Static Site Generator? Cloud cannon, 2022. URL: https://cloudcannon.com/blog/

what-is-a-static-site-generator/.
13.	Yang K. An Introduction to Static Site Generators. Digital Ocean, 2022. URL: https://www.digitalocean.

com/community/conceptual-articles/introduction-to-static-site-generators.
14.	Jiang W.R. Yan J.H. Implementation of Static Web-Pages Generator Using JavaScript. Applied

Mechanics and Materials, 2010. Pages. 588-591. DOI:10.4028/www.scientific.net/AMM.39.588.
15.	Jekyll. Simple, blog-aware, static sites. URL: https://jekyllrb.com.
16.	Eleventy. A simpler static site generator. URL: https://www.11ty.dev.
17.	The Best React-Based Framework. Gatsby. URL: https://www.gatsbyjs.com.
18.	Vepsäläinen J. Vuorimaa P. Bridging Static Site Generation with the Dynamic Web. In: Di Noia, T., Ko,

IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol 13362,
2022. DOI: 10.1007/978-3-031-09917-5_32. ISBN: 978-3-031-09916-8.

19.	Fink G. Flatow I. Introducing Single Page Applications, 2014. DOI: 10.1007/978-1-4302-6674-7_1.
20.	Gudivada V.N. Rao D. Paris J. Understanding Search Engine Optimization, 2015. Pages: 67-76. DOI:

10.1109/MC.2015.297.
21.	Sun Y. Server-Side Rendering: Building Reliable, High-Performance Web Apps Using Elm-Inspired

Architecture, Event Pub-Sub, and Components. Practical Application Development with AppRun, 2019. Pages:
191-217. DOI:10.1007/978-1-4842-4069-4_9.

22.	Handlebars. URL: https://handlebarsjs.com.
23.	Pug. URL: https://pugjs.org/api/getting-started.html.
24.	Vilas J.F. Pazos-Arias J.J. Vilas A.F. Optimizing Web Services Performance Using Cache. Journal

of Advanced Computational Intelligence and Intelligent Informatics, 2006. Pages: 713-720. DOI: 10.20965/
jaciii.2006.p0713.

25.	Wang J. A Scalable Efficient Robust Adaptive (SERA) Architecture for the Next Generation of Web
Service, 1999.

26.	Running Next.js applications with Serverless services on AWS. Serverlessland. URL: https://
serverlessland.com/repos/nextjs-serverless-architecture.

27.	Serverless Nextjs Plugin. URL: https://www.serverless.com/plugins/serverless-nextjs-plugin.
28.	Pull-request with a description of how Next.js Serverless works inside. URL: https://github.com/

serverless-nextjs/serverless-next.js/pull/1028.
29.	Rajan A.P. Serverless Architecture – A Revolution in Cloud Computing, 2018. DOI: 10.1109/

ICoAC44903.2018.8939081.
30.	The React Framework for the Web. URL: https://nextjs.org.
31.	DBB Software compare. Website URL: https://dbbsoftware.com/en.
32.	Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software, 2004. ISBN:

978-0321125217.
33.	Chamberlain N. Applying Domain Driven Design with CQRS and Event Sourcing, 2017.
34.	CloudFront – How AWS Pricing Works. URL: https://docs.aws.amazon.com/whitepapers/latest/how-

aws-pricing-works/cloudfront.html.
35.	Elasticbeanstalk – AWS. URL: https://aws.amazon.com/elasticbeanstalk.

REFERENCES:
1.	Thakur, N., Singh, A., Sangal, A.L. (2022). Cloud services selection: A systematic review and future

research directions. Computer Science Review. Volume 46. Doi: 10.1016/j.cosrev.2022.100514.
2.	Cloud computing services – Amazon Web Services. Retrieved from https://aws.amazon.com.
3.	Google Cloud console. Retrieved from https://console.cloud.google.com.
4.	Azure Cloud Services. Retrieved from https://azure.microsoft.com/en-us/products/cloud-services.
5.	Chockler, G., Laden, G., Vigfusson, Y. (2011). Design and implementation of caching services in the

cloud. DOI:10.1147/JRD.2011.2171649.
6.	Choi, J., Gu, Y., Kim, J. (2020). Learning-based dynamic cache management in a cloud. Journal of

Parallel and Distributed Computing. Volume 145. DOI: 10.1016/j.jpdc.2020.06.013.

50

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 4, 2023

7.	Berger, D.S., Gland, P., Singla, S., Ciucu, F. (2014). Exact analysis of TTL cache networks. Performance
Evaluation. Volume 79. DOI: 10.1016/j.peva.2014.07.001.

8.	Redis. Retrieved from https://redis.io.
9.	Fukuda, E.S. (2014). Caching memcached at reconfigurable network interface. Conference:

IEEE International Conference on Field Programmable Logic and Applications (FPL). DOI: 10.1109/
FPL.2014.6927487.

10.	Elasticache – AWS. Retrieved from https://aws.amazon.com/elasticache.
11.	Wu, H., Fan, Y., Wang, Y., Ma, H., Xing, L. (2021). A Comprehensive Review on Edge Caching from the

Perspective of Total Process: Placement, Policy and Delivery. Doi: 10.3390/s21155033.
12.	Large, D. (2022). What is a Static Site Generator? Cloud cannon. Retrieved from https://cloudcannon.

com/blog/what-is-a-static-site-generator/.
13.	Yang, K. (2022). An Introduction to Static Site Generators. Digital Ocean. Retrieved from https://www.

digitalocean.com/community/conceptual-articles/introduction-to-static-site-generators.
14.	Jiang, W.R., Yan, J.H. (2010). Implementation of Static Web-Pages Generator Using JavaScript. Applied

Mechanics and Materials. DOI: 10.4028/www.scientific.net/AMM.39.588.
15.	Jekyll. Simple, blog-aware, static sites. Retrieved from https://jekyllrb.com.
16.	Eleventy. A simpler static site generator. Retrieved from https://www.11ty.dev.
17.	The Best React-Based Framework. Gatsby. Retrieved from https://www.gatsbyjs.com.
18.	Vepsäläinen, J., Vuorimaa, P. (2022). Bridging Static Site Generation with the Dynamic Web. In: Di Noia,

T., Ko, IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol
13362. DOI: 10.1007/978-3-031-09917-5_32. ISBN: 978-3-031-09916-8.

19.	Fink, G., Flatow, I. (2014). Introducing Single Page Applications. DOI: 10.1007/978-1-4302-6674-7_1.
20.	Gudivada, V.N., Rao, D., Paris, J. (2015). Understanding Search Engine Optimization. DOI: 10.1109/

MC.2015.297.
21.	Sun, Y. (2019). Server-Side Rendering: Building Reliable, High-Performance Web Apps Using Elm-

Inspired Architecture, Event Pub-Sub, and Components. Practical Application Development with AppRun.
DOI:10.1007/978-1-4842-4069-4_9.

22.	Handlebars. Retrieved from https://handlebarsjs.com.
23.	Pug. Retrieved from https://pugjs.org/api/getting-started.html.
24.	Vilas, J.F., Pazos-Arias, J.J., Vilas, A.F. (2006). Optimizing Web Services Performance Using Cache.

Journal of Advanced Computational Intelligence and Intelligent Informatics. DOI: 10.20965/jaciii.2006.p0713.
25.	Wang, J. (1999). A Scalable Efficient Robust Adaptive (SERA) Architecture for the Next Generation of

Web Service.
26.	Running Next.js applications with Serverless services on AWS. Serverlessland. Retrieved from https://

serverlessland.com/repos/nextjs-serverless-architecture.
27.	Serverless Nextjs Plugin. Retrieved from https://www.serverless.com/plugins/serverless-nextjs-plugin.
28.	Pull-request with a description of how Next.js Serverless works inside. Retrieved from https://github.

com/serverless-nextjs/serverless-next.js/pull/1028.
29.	Rajan, A.P. (2018). Serverless Architecture – A Revolution in Cloud Computing. DOI: 10.1109/

ICoAC44903.2018.8939081.
30.	The React Framework for the Web. Retrieved from https://nextjs.org.
31.	DBB Software compare. Website Retrieved from https://dbbsoftware.com/en.
32.	Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software. ISBN:

978-0321125217.
33.	Chamberlain, N. (2017). Applying Domain Driven Design with CQRS and Event Sourcing.
34.	CloudFront – How AWS Pricing Works. Retrieved from https://docs.aws.amazon.com/whitepapers/

latest/how-aws-pricing-works/cloudfront.html.
35.	Elasticbeanstalk – AWS. Retrieved from https://aws.amazon.com/ elasticbeanstalk.

