
50

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

UDC 614.2+574/578+004.38
DOI https://doi.org/10.32782/IT/2024-1-7

Oleksandr LYTVYNOV
Candidate of Technical Sciences, Associate Professor, Faculty of Physics, Electronics and Computer Systems,
Oles Honchar Dnipro National University, 72, Haharina ave., Dnipro, Ukraine, 49000, lytvynov@ffeks.dnu.edu.ua
ORCID: 0000-0001-7660-1353

Dmytro HRUZIN
Master, Postgraduate Student, Faculty of Physics, Electronics and Computer Systems, Oles Honchar Dnipro
National University, 72, Haharina ave., Dnipro, Ukraine, 49000, hruzin_dl@ffeks.dnu.edu.ua.
ORCID: 0009-0004-8534-2559

Maksym FROLOV
Master, Faculty of Physics, Electronics and Computer Systems, Oles Honchar Dnipro National University, 72,
Haharina ave., Dnipro, Ukraine, 49000, frolov_mo@ffeks.dnu.edu.ua.
ORCID: 0009-0000-6624-6028

To cite this article: Lytvynov. O., Hruzin, D., Frolov, М. (2024). Pro mihratsiiu proektu z Domain
Driven Design arkhitekturoiu na CQRS ta Event Sourcing [On the migration of Domain Driven Design to
CQRS with Event Sourcing software architecture]. Information Technology: Computer Science, Software
Engineering and Cyber Security, 1, 50–60, doi: https://doi.org/10.32782/IT/2024-1-7

ON THE MIGRATION OF DOMAIN DRIVEN DESIGN TO CQRS
WITH EVENT SOURCING SOFTWARE ARCHITECTURE

The article addresses the issue of migrating applications, particularly those following the Domain-Driven Design
(DDD) architecture, to the Command Query Responsibility Segregation (CQRS) paradigm with Event Sourcing.
Long-standing systems often need help with problems related to inflexible, outdated architecture, and dependencies,
leading to increased maintenance costs. The paper examines the advantages of DDD and proposes CQRS as
a viable alternative, focusing on improving productivity and scalability.

The main objective of the work is to assess a secure path for migrating a project from DDD architecture to the CQRS
and Event Sourcing architecture and to determine the migration roadmap. The article conducts an experiment
in which migration of a test project is performed, evaluating the time, effort, and results of the migration. The
research methodology includes evaluating complexity using McCabe's Cyclomatic Complexity metric and assessing
performance through the execution time of system methods.

The experiment is conducted on a typical project – a task-tracking system. The results of implementing CQRS
show a fourfold increase in the number of classes and a 50% increase in the number of lines of code. However,
this increase is justified as it improves modularity, transparency, and manageability during development, ultimately
facilitating system maintenance and significantly enhancing overall system productivity. It is worth noting that
the overall cyclomatic complexity of the system remains almost unchanged.

In summary, the article examines the assessment of migrating a project from DDD architecture to CQRS
and Event Sourcing, combining theoretical findings with practical experimentation. It provides valuable insights
into the advantages, disadvantages, and challenges of implementing CQRS architecture in complex information
systems.

Key words: Domain-Driven Design, CQRS, Event Sourcing, Architecture migration.

Oлександр ЛИТВИНОВ
кандидат технічних наук, доцент, факультет фізики, електроніки та комп’ютерних систем,
Дніпровський національний університет імені Олеся Гончара, просп. Гагаріна, 72, м. Дніпро, Україна,
49000
ORCID: 0000-0001-7660-1353

Дмитро ГРУЗІН
магістр, аспірант, факультет фізики, електроніки та комп’ютерних систем, Дніпровський
національний університет імені Олеся Гончара, просп. Гагаріна, 72, м. Дніпро, Україна, 49000
ORCID: 0009-0004-8534-2559

51

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

Максим ФРОЛОВ
магістр, факультет фізики, електроніки та комп’ютерних систем, Дніпровський національний
університет імені Олеся Гончара, просп. Гагаріна, 72, м. Дніпро, Україна, 49000
ORCID: 0009-0000-6624-6028

Бібліографічний опис статті: Литвинов, O., Грузін, Д., Фролов, М. (2024). Про міграцію проекту
з Domain Driven Design архітектурою на CQRS та Event Sourcing. Information Technology: Computer
Science, Software Engineering and Cyber Security, 1, 50–60, doi: https://doi.org/10.32782/IT/2024-1-7

ПРО МІГРАЦІЮ ПРОЕКТУ З DOMAIN DRIVEN DESIGN АРХІТЕКТУРОЮ
НА CQRS ТА EVENT SOURCING

Стаття розглядає проблему міграції додатків, зокрема тих, що використовують архітектурний
підхід Domain-Driven Design (DDD), до парадигми Command Query Responsibility Segregation (CQRS) з Event
Sourcing. Довго існуючі системи часто стикаються з проблемами, пов'язаними з негнучкою, застарілою
архітектурою та залежностями, що призводять до збільшення витрат на обслуговування. У роботі
розглядаються переваги DDD та пропонується CQRS як життєздатна альтернатива, з акцентом на
покращенні продуктивності та масштабованості.

Основною метою роботи є оцінка безпечного шляху міграції проекту з DDD архітектурою на
архітектуру CQRS та Event Sourcing, а також визначення дорожньої карти міграції. У статті проводиться
експеримент, в якому здійснюється міграція тестового проекту, оцінюються час, зусилля та результати
міграції. Методологія дослідження включає оцінку складності за допомогою метрики цикломатичної
складності МакКейба та оцінку продуктивності через час виконання методів системи.

Експеримент проводиться на типовому проекті – системі відстеження завдань. Результати реалізації
CQRS показують збільшення кількості класів у чотири рази та кількості рядків коду на 50 відсотків. Однак
це збільшення є обґрунтованим, оскільки воно покращує модульність, прозорість та керованість під час
розробки, що в кінцевому підсумку полегшує обслуговування та, в цілому, значно підвищує продуктивність
системи. Варто зазначити, що загальна цикломатична складність системи майже не змінилася.

Підсумовуючи, стаття розглядає оцінку міграції проекту з DDD архітектурою на CQRS та Event
Sourcing, поєднуючи теоретичні висновки з практичним експериментом. Вона надає цінну інформацію
щодо переваг, недоліків та викликів при впровадженні архітектури CQRS в складні інформаційні системи.

Ключові слова: доменно-орієнтований дизайн, CQRS, Event Sourcing, міграція архітектури.

Background and Literature Review. In the
market, there is a vast number of applications.
These are complex information systems that still
perform their functions but over time have lost flex-
ibility, possess outdated architecture, or depend-
encies. This leads to an increase in the complexity
and cost of maintaining such systems.

Many modern applications adopt the Domain-
Driven Design (DDD) architecture (Evans, 2004)
(Vernon, 2013), a methodology that emphasizes
aligning software design with the domain model.
DDD revolves around the concept of bounded
contexts, which define clear boundaries within a
system where specific domain models, terms, and
rules apply coherently. The concept of bounded
contexts (Fowler, 2014) in DDD promotes modular
design and clear separation of concerns, allow-
ing different parts of the system to operate inde-
pendently within their designated contexts. Each
bounded context delineates its language, rules,
and semantics, fostering better understanding and
communication among team members working
within that context. Within these bounded contexts,
system entities are identified and organized into
aggregates or aggregate roots, which represent

clusters of associated objects treated as a single
unit for data manipulation and consistency.

An aggregate is the primary entity at the busi-
ness logic level. When there is a request to mod-
ify or read data from outside, this request passes
through the controller level and reaches the busi-
ness logic level, which calls the repository to
retrieve the necessary aggregate from the data-
base. Once the aggregate is loaded into memory,
the necessary methods are invoked to perform
the requested operations, thereby modifying its
state according to the business logic encapsu-
lated within the domain model. Subsequently, the
updated aggregate is saved back to the database,
by the repository (Fig. 1).

One alternative, when it comes to the archi-
tecture of complex information systems, is CQRS
(Command Query Responsibility Segregation)
with Event Sourcing (Young, 2010; Betts, 2013).
This approach can be regarded as a derivative of
DDD.

Event Sourcing implies the absence of a clas-
sical database, and data is stored in the form of
events that represent changes to the system's
state. Events are stored in an Event Store, which

52

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

serves as the source of truth for the system. Clas-
sically, when querying an aggregate, the repository
does not simply fetch the required record from the
database but retrieves all events associated with
the relevant instance from the event store. Sub-
sequently, these events are replayed onto a new
entity, resulting in the retrieval of the aggregate
object in its current state.

CQRS, in turn, proposes the separation of
read and write operations at the logic level and
often even at the data storage level. In conjunc-
tion with Event Sourcing, the data processing
process looks as follows (Fig. 2). After the aggre-
gate's state is modified, events about its changes
are saved in the Event Store and also sent to
the Event Bus to notify other parts of the system
about the occurred changes. Individual handlers
are subscribed to specific events and update pro-
jections (6) – denormalized data views prepared
directly for read operations. When a read Query
is requested, the query handler selects pre-pre-
pared data from the database without resorting to
complex aggregation queries or additional data
mappings. This approach adds development com-
plexity but positively impacts the system's perfor-
mance and flexibility.

The advantages of the CQRS with Event
Sourcing architecture compared to DDD (Kenneth,
2013) include improved performance for read and
write requests, as well as better flexibility and

scalability due to asynchronous event processing
and reduced risk of conflicts when making changes.
This is because commands that modify data and
queries that read data operate independently of
each other. Another significant advantage is the
instant storage of all events, enabling the system's
state to be restored to any point in time from its
creation to the present.

Task definition. For some systems using DDD
architecture, there arises a need to store events
for monitoring or taking some business solutions,
or enhance flexibility, making the CQRS with
Event Sourcing architecture more suitable for the
system than DDD. For modern information sys-
tems, issues of performance, scalability, and ease
of software maintenance are crucial. The CQRS
architecture provides an innovative methodologi-
cal approach to optimize command and query pro-
cessing in applications, contributing to increased
productivity, scalability, and modularity of systems.
However, alongside the advantages, there are
practical challenges in its implementation, such
as an increase in the number of classes and con-
figuration complexity. Therefore, researching the
practical aspects of applying the CQRS architec-
ture for developing a modern information system,
analyzing and evaluating the pros and cons of this
approach, remains relevant.

The objective of this article is to assess a
secure path for migrating a complex information

Fig. 1. DDD update operation flow

53

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

system from DDD to the CQRS with Event Sourc-
ing architecture. This article describes the migra-
tion stages. Additionally, it involves conducting
an experiment to migrate the architecture of a
test project and provides an assessment of the
time and results of the migration for a test typical
project.

Main part. The migration of an existing com-
plex information system from DDD to CQRS with
Event Sourcing architecture (Salvatierra, 2013) is
not a simple task and involves several stages.

Fig. 3 describes the flow of migration of the
DDD system to a CQRS with Event Sourcing
application. The first step is to make infrastruc-
tural changes, specifically adding the Command
Bus, the Event Store, and the Event Bus. After
implementing these modules, the controller level
and service level (domain) need to be adapted to
work with the new modules. At the service level,
in accordance with the CQRS architecture, it is
assumed that the controller receives a request
from an external client, creates a command, and

Fig. 2. CQRS read/write operations flow

 Fig. 3. DDD to CQRS with Event Sourcing architecture migration flow

54

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

sends it to the Command Bus. At this stage, it's
essential to decide whether to modify the pub-
lic API of the system. If the public API is going
to change, it's better to do it as early as possi-
ble to give developers of client applications time
to update the communication contract with the
system while the main migration is taking place.
Existing controllers need to be updated in the
following way. Instead of directly calling domain-
level services, controllers responsible for write
operations should create corresponding com-
mands and pass them to the Command Bus and
it means that the Client application cannot receive
the result of the operation in response to the oper-
ation request directly. The domain services then
should be divided and transformed into command
handlers and query handlers. Command handlers
should subscribe to the Command Bus and pro-
cess the corresponding commands. The logic for
read operations is moved into query handlers. The
controllers responsible for performing queries con-
tinue to call these methods to retrieve and pass
data to the client, but now from query handlers. In
result, each application service will be divided into
several handlers depending on its logical load.

In the next stage, databases for denormalized
data views, which query handlers will use for quick
retrieval of necessary responses (projections), are
described and created. Having ready projections
allows creating and testing event handlers, which,
upon receiving corresponding events in the event
bus, will update the projections.

All the previous steps only involved changes
in the code and did not affect the system's data.
The next step of the Cold Turkey migration (Bro-
die, 1995) is migrating data from the normalized
database to the Event Store and shifting the focus
of source-of-truth to the Event Store. Performing
such an operation on a constantly updating system
is a challenging process. Based on Marius Breit-
mayer's work on deriving Event Logs from Leg-
acy Software Systems (Breitmayer, 2023), data
migration occurs as follows: during a maintenance
break, a database dump is made, and the system
is updated to a version in which, in parallel with
the operation of the legacy database, events are
recorded to the Event Store. After launching the
system, based on the available data in the dump,
events of creating existing entities with a timestamp
equal to the creation of a record in the database
are migrated to the event store. Thus, the event
store is synchronized with the legacy database.
After synchronization, another maintenance break
will be required, during which projection databases
will be filled using the event replay algorithm from
the current event store, and the system will be

updated to a version in which event handlers are
enabled and update projections.

In the subsequent stages of development, the
logic of query handlers is updated one by one to
work with projections instead of the legacy data-
base. After fully updating the codebase of query
handlers, the last stage of system update is dis-
connecting and stopping the legacy database.

Methods
McCabe Cyclomatic Complexity is a crucial

metric in software engineering that assesses the
complexity of a program by measuring the number
of linearly independent paths through its source
code. Introduced by Thomas J. McCabe (McCabe,
1976), this algorithmic approach has become an
integral part of software quality assessment and
maintenance.

The Cyclomatic Complexity of a program is cal-
culated using the formula 1.

V E N P� � � 2 * , (1)

where: E – is the number of edges in the flow
graph,

N – is the number of nodes in the flow graph,
and

P – is the number of connected components
(regions) in the flow graph.

The resulting value provides insights into the
program's complexity. Generally, a higher Cyclo-
matic Complexity indicates a higher likelihood of
bugs and maintenance challenges. Various thresh-
olds and guidelines exist to help interpret the com-
plexity score, aiding developers in optimizing and
refactoring their code.

To assess performance, measurements of the
execution time of the system's basic methods are
conducted. The measurements are performed auto-
matically. The method is called in a loop 1000 times,
after which the arithmetic mean is calculated to
determine the average execution time of the method.

Experiment.
The goal of the experiment is to explore the

possibilities of implementing CQRS with Event
Sourcing approach in real projects and to assess
the time and effort required to migrate a project
with a specific volume of code from DDD architec-
ture to CQRS with Event Sourcing. Additionally,
the complexity and performance of the original and
migrated systems will be evaluated and compared.

To achieve the goal, the following tasks need to
be addressed:

●	 Select a typical project and research meth-
odology.

●	 Implement a typical project using a con-
ventional approach (without applying CQRS and
Event Sourcing).

55

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

●	 Conduct experiments to adapt the devel-
oped project to the CQRS with Event Sourcing
architecture, measuring the time and effort spent
on adaptation.

●	 Conduct an analysis of the results. Evaluate
the advantages and disadvantages of CQRS with
Event Sourcing architecture, and potential chal-
lenges in its implementation.

As already defined, it is necessary to select
a project with logic that is not overly complex
but includes typical tasks of a real project, to
be developed using the chosen approach. Addi-
tionally, to identify the advantages and disad-
vantages of this approach, a comparison of the
time spent on implementation and modification of
functions with the conventional approach (with-
out using CQRS and Event Sourcing) is required.
The chosen project is a Task Tracking System,
which is a classic sample project for studying the
design and implementation aspects of systems
with a complex application domain. For example,
a similar project is used as a sample in Vernon’s
work (Vernon, 2011).

The application domain of the project is ideally
suited for research because developers do not
need to spend time learning unfamiliar terminology
and business logic. Additionally, this application

domain is not simple, and such a system can con-
tain many functions and capabilities.

The source code for the conducted experiments
is hosted in an open-source repository on GitHub
and is accessible via the link (Frolov, 2023).

TaskTrackingSystem description
To grasp the magnitude of the experimental

undertaking, refer to Figures 4 and 5, which pro-
vide component diagrams and the database struc-
ture of the Domain-Driven Design system. The
system's domain comprises three aggregate roots:
User, Assignment, and Project.

In Figure 4, the component diagram delineates
the relationships between the aggregate roots
and their subordinate entities. The Project aggre-
gate oversees projects and their statuses, while
the Assignment aggregate encompasses assign-
ments and assignment statuses. The User is more
intricate, aggregating users, user projects, and
positions.

Within the Data Access Layer, additional entities
exist, but the overarching structure remains con-
sistent. The primary entities are User, Assignment,
and Project models. Each of these entities main-
tains relationships with other tables, such as Pro-
ject Statuses, Tokens, Positions, etc. Users exhibit
a one-to-many relationship with Assignments and

Fig. 4. Component diagram of TaskTrackingSystem

56

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

a many-to-many relationship with Projects. Addi-
tionally, each project can encompass multiple
assignments.

The TaskTrackingSystem functionality encom-
passes various methods. For the User aggregate,
these include adding, reading, editing, and delet-
ing (CRUD operations) users, reading users with
comprehensive information, CRUD operations for
user roles, and authorization methods like sign-up,
sign-in, and password update. The Assignment
functionality involves assigning users to tasks with
selected positions, CRUD operations for assign-
ments, and assignment statuses. As for the Project
aggregate, it involves simultaneous CRUD opera-
tions for projects and project statuses, along with
operations for adding and removing tasks to/from
the project.

Results of CQRS Implementation
Complexity evaluation
To write the BLL without using the CQRS pat-

tern, it took 12 days, and 47 classes were written
to ensure the full functioning of the business logic
layer.

As seen in Fig. 6, there was initially a growth
in project development in the form of creating
various classes that met the requirements. How-
ever, towards the end of the development, there
were fewer new classes created under new

requirements, and the focus shifted to modifying
existing ones. By the 12th day, the majority of
classes contained at least 300 lines of code. In
Fig. 7, it can be observed that when a new require-
ment emerged or a bug requiring modification of a
part of the business logic was detected, it was nec-
essary to check whether the modification affected
other parts of the business logic since everything
was interconnected. In the end, modifying and
maintaining the project required significant effort.

The implementation of the CQRS (Command
Query Responsibility Segregation) pattern resulted
in an increase in the number of classes in the busi-
ness logic from 47 to 213 and required a significant
portion of the expended time (Fig. 8).

At first glance, it may seem that this increase
complicates the system. However, the reason
for this increase is an improved distribution of
responsibilities among system components, which
enhances the modularity of the system, its adapt-
ability to changes, testability, and ensures its ongo-
ing support and development (Fig. 9).

The main advantage of this increase in the num-
ber of classes lies in the separation of responsibili-
ties between commands and queries. Commands,
responsible for changing the system's state, and
queries providing data access are placed in dis-
tinct classes. This allows for better manageability

Fig. 5. Database structure of TaskTrackingSystem

57

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

Fig. 6. The dependence of the number of classes on the number of development days
for DDD approach implementation

Fig. 7. The dependence of the development and maintenance cost coefficient on the number
of development days for DDD approach implementation

during development, as it becomes more transpar-
ent and modular.

Although it may seem that this leads to an
increased workload during implementation, it ulti-
mately facilitates system maintenance. By sep-
arating commands and queries, each class is
responsible for specific functionality. This simpli-
fies debugging, extension, and adding new func-
tionality without the need to edit large code blocks,

as the largest classes now contain no more than
50 lines of code.

This is also confirmed by cyclomatic complex-
ity metrics, calculated for the whole project using
SonarCloud (14). Table 1 shows the metrics for
the system with DDD architecture and CQRS with
Event Sourcing architecture. Despite the increase
in the number of classes and the addition of mod-
ules such as Command Bus, Event Bus, and Event

58

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

Fig. 8. The dependency between the number of classes and the development days
including migration to CQRS and Event Sourcing approach

Fig. 9. The relationship between the lines of code and the number of development days
including migration to CQRS and Event Sourcing approach

Store, the overall complexity of the system after
migration to CQRS with Event Sourcing architec-
ture became even lower. Thus, the total number
of lines of code for the DDD architecture option
amounted to slightly over three thousand with a
total cyclomatic complexity of 534, while for CQRS
with Event Sourcing, it was 4,620 with a complex-
ity of 522.

However, if the project lacks complex business
logic and there are no prospects for its complica-
tion, the time and effort spent on developing com-
plex infrastructure and system functions may not
be justified. That is, the time and effort in devel-
oping such a project with a conventional architec-
ture will be significantly less than in the case of
applying CQRS, and the benefits of supporting a

59

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

Table 1
Complexity metrics

Metric DDD CQRS with Event Sourcing
Lines of code 3 101 4 620
Overall Cyclomatic complexity 534 522
Business Logic Layer Cyclomatic complexity 312 285
Data Access Layer Cyclomatic complexity 133 157
Web API Cyclomatic complexity 89 80

Table 2
Performance evaluation. Function response time

Method DDD (time ms.) CQRS with Event Sourcing (time ms.)
getUsers 281 43
addUser 28 48
updateUser 119 46
deleteUser 71 52
getUser 37 37

complex system provided by the CQRS approach
may be nullified.

Performance evaluation
Table 2 provides a comparison of the average

execution speed across 1000 requests for basic
methods for the case of applying the CQRS with
Event Sourcing architecture and DDD architec-
ture. To reduce experimental error, the database
was replaced with a mock object containing static
data.

Reading the list of users (getUsers): The use
of CQRS significantly accelerated the operation of
retrieving the list of users, reducing the execution
time from 281 to 43. This demonstrates the effec-
tiveness of separating read and write operations.

Adding a new user (addUser): Although the
addition operation became slightly slower with the
use of CQRS, this may be compensated by other
advantages of the architecture in the future.

Updating a user (updateUser): Applying CQRS
resulted in a significant reduction in the execution
time of the updateUser operation, reducing it from
119 to 46.

Deleting a user (deleteUser): With the use
of CQRS, the execution time of deleting a user
became slightly faster, decreasing from 71 to 52.

Getting a specific user (getUser): The execu-
tion time of the operation to retrieve a specific user
remains stable with both approaches.

Summary. The work investigated the imple-
mentation of the CQRS with Event Sourcing
architecture in the already developed TaskTrack-
ingSystem. A performance comparison was made
between systems with and without the architec-
ture, and the time costs of migrating the system to
the new architecture were evaluated.

The analysis of the research results indicates
a significant impact of implementing CQRS with
Event Sourcing architecture on the system's effi-
ciency. In particular, the getUsers method demon-
strated a noticeable reduction in execution time
from 281 ms to 43 ms after the architecture's intro-
duction. On the other hand, the addUser method
showed an increase in execution time from 28 ms
to 48 ms. The data analysis also shows that the
implementation of CQRS significantly affects the
cost coefficient. Without considering the days of
CQRS implementation, the coefficient gradually
increases depending on the development duration
due to the system's complexity. With the introduc-
tion of CQRS, there is a sharp increase in the coef-
ficient on the 13th day, after which it stabilizes and
becomes lower than when CQRS was not used.
The overall dynamics of the cost coefficient show
a systematic increase without the implementation
of CQRS, depending on the development duration.
After the introduction of CQRS, project mainte-
nance costs are stable.

BIBLIOGRAPHY:
1.	Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software, 2004. ISBN:

978-0321125217.
2.	Vernon V. Implementing Domain-Driven Design, 2013. ISBN: 978-0321834577.
3.	Fowler M. Bounded Context, 2014. URL: https://martinfowler.com/bliki/BoundedContext.html.

60

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

4.	Young G. CQRS Documents by Greg Young, 2010. Pages: 50–52. URL: https://cqrs.files.wordpress.
com/2010/11/cqrs_documents.pdf.

5.	Betts D. Dominguez J. Melnik G. Simonazzi F. Subramanian M. Young G. Exploring CQRS and Event
Sourcing: A journey into high scalability, availability, and maintainability with Windows Azure, 2013. ISBN:
978-1621140160.

6.	Practical and focused guide for survival in post-CQRS world. Projections. URL: http://cqrs.wikidot.com/
doc:projection.

7.	Kenneth T. Introduction to Domain Driven Design, CQRS and Event Sourcing, 2013. URL: https://www.
kenneth-truyers.net/2013/12/05/introduction-to-domain-driven-design-cqrs-and-event-sourcing/.

8.	Salvatierra G. Mateos C. Crasso M. Legacy System Migration Approaches, 2013. DOI: 10.1109/
TLA.2013.6533975.

9.	Brodie M. L. Stonebraker M. Ai S. DARWIN: On the Incremental Migration of Legacy Information Sys-
tems, 1995.

10.	Breitmayer M. Arnold L. La Rocca S. Reichert M. Deriving Event Logs from Legacy Software Systems,
2023. DOI: 10.1007/978-3-031-27815-0_30.

11.	McCabe T. J. A Complexity Measure, 1976. DOI: 10.1109/TSE.1976.233837.
12.	Vernon V. Effective Aggregate Design, 2011. Parts I – III.
13.	Frolov M. TaskTrackingSystem repository on GitHub, 2023.
14.	SonarCloud Online Code Review as a Service Tool. URL: https://sonarcloud.io/.

REFERENCES:
1.	Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software. ISBN:

978-0321125217.
2.	Vernon, V. (2013). Implementing Domain-Driven Design. ISBN: 978-0321834577.
3.	Fowler, M. (2014). Bounded Context. Retrieved from: https://martinfowler.com/bliki/BoundedContext.

html.
4.	Young, G. (2010). CQRS Documents by Greg Young. Pages: 50–52. Retrieved from: https://cqrs.files.

wordpress.com/2010/11/cqrs_documents.pdf.
5.	Betts, D., Dominguez, J., Melnik, G., Simonazzi, F., Subramanian, M. & Young, G. (2013). Exploring

CQRS and Event Sourcing: A journey into high scalability, availability, and maintainability with Windows Azure.
ISBN: 978-1621140160.

6.	Practical and focused guide for survival in post-CQRS world. Projections. Retrieved from: http://cqrs.
wikidot.com/doc:projection.

7.	Kenneth, T. (2013). Introduction to Domain Driven Design, CQRS and Event Sourcing. Retrieved from:
https://www.kenneth-truyers.net/2013/12/05/introduction-to-domain-driven-design-cqrs-and-event-sourcing/.

8.	Salvatierra, G., Mateos, C. & Crasso, M. (2013). Legacy System Migration Approaches. DOI: 10.1109/
TLA.2013.6533975.

9.	Brodie, M., L. & Stonebraker, M., Ai, S. (1995). DARWIN: On the Incremental Migration of Legacy Infor-
mation Systems.

10.	Breitmayer, M., Arnold, L., La Rocca, S. & Reichert, M. (2023). Deriving Event Logs from Legacy Soft-
ware Systems. DOI: 10.1007/978-3-031-27815-0_30.

11.	McCabe, T., J. (1976). A Complexity Measure. DOI: 10.1109/TSE.1976.233837.
12.	Vernon, V. (2011). Effective Aggregate Design. Parts I – III.
13.	Frolov, M. (2023). TaskTrackingSystem repository on GitHub.
14.	SonarCloud Online Code Review as a Service Tool. Retrieved from: https://sonarcloud.io/.

