Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

UDC 614.2+574/578+004.38
DOI https://doi.org/10.32782/1T/2024-1-7

Oleksandr LYTVYNOV

Candidate of Technical Sciences, Associate Professor, Faculty of Physics, Electronics and Computer Systems,
Oles Honchar Dnipro National University, 72, Haharina ave., Dnipro, Ukraine, 49000, lytvynov@ffeks.dnu.edu.ua
ORCID: 0000-0001-7660-1353

Dmytro HRUZIN

Master, Postgraduate Student, Faculty of Physics, Electronics and Computer Systems, Oles Honchar Dnipro
National University, 72, Haharina ave., Dnipro, Ukraine, 49000, hruzin_dl@ffeks.dnu.edu.ua.

ORCID: 0009-0004-8534-2559

Maksym FROLOV

Master, Faculty of Physics, Electronics and Computer Systems, Oles Honchar Dnipro National University, 72,
Haharina ave., Dnipro, Ukraine, 49000, frolov_mo@ffeks.dnu.edu.ua.

ORCID: 0009-0000-6624-6028

To cite this article: Lytvynov. O., Hruzin, D., Frolov, M. (2024). Pro mihratsiiu proektu z Domain
Driven Design arkhitekturoiu na CQRS ta Event Sourcing [On the migration of Domain Driven Design to
CQRS with Event Sourcing software architecture]. Information Technology: Computer Science, Software
Engineering and Cyber Security, 1, 50-60, doi: https://doi.org/10.32782/1T/2024-1-7

ON THE MIGRATION OF DOMAIN DRIVEN DESIGN TO CQRS
WITH EVENT SOURCING SOFTWARE ARCHITECTURE

The article addresses the issue of migrating applications, particularly those following the Domain-Driven Design
(DDD) architecture, to the Command Query Responsibility Segregation (CQRS) paradigm with Event Sourcing.
Long-standing systems often need help with problems related to inflexible, outdated architecture, and dependencies,
leading to increased maintenance costs. The paper examines the advantages of DDD and proposes CQRS as
a viable alternative, focusing on improving productivity and scalability.

The main objective ofthe work is to assess a secure path for migrating a project from DDD architecture tothe CQRS
and Event Sourcing architecture and to determine the migration roadmap. The article conducts an experiment
in which migration of a test project is performed, evaluating the time, effort, and results of the migration. The
research methodology includes evaluating complexity using McCabe's Cyclomatic Complexity metric and assessing
performance through the execution time of system methods.

The experiment is conducted on a typical project — a task-tracking system. The results of implementing CQRS
show a fourfold increase in the number of classes and a 50% increase in the number of lines of code. However,
this increase is justified as it improves modularity, transparency, and manageability during development, ultimately
facilitating system maintenance and significantly enhancing overall system productivity. It is worth noting that
the overall cyclomatic complexity of the system remains almost unchanged.

In summary, the article examines the assessment of migrating a project from DDD architecture to CQRS
and Event Sourcing, combining theoretical findings with practical experimentation. It provides valuable insights
into the advantages, disadvantages, and challenges of implementing CQRS architecture in complex information
systems.

Key words: Domain-Driven Design, CQRS, Event Sourcing, Architecture migration.

OnekcaHop JINTBUHOB

kaHOUOam mMmexHIYHUX Hayk, O0oueHm, hakynbmem QIi3uKU, €1eKMPOHIKU ma KOMITIOMepPHUX Cucmem,
[Hinposcbkuli HayjioHanbHUl yHieepcumem imeHi Onecsi F'oH4Yapa, npocr. [azapiHa, 72, M. [JHinpo, YkpaiHa,
49000

ORCID: 0000-0001-7660-1353

Amumpo rPY3IH

Mmazicmp, acnipaHm, akynbmem hi3uKu, €fIeKMPOHIKU ma KOMM'lomepHUx cucmem, [Hinposcbkul
HaujoHanbHul yHieepcumem imeHi Onecs Nonvapa, npocn. azapiHa, 72, m. [Hinpo, YkpaiHa, 49000
ORCID: 0009-0004-8534-2559

50



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

Makcum ®POJIOB

Mmazicmp, chakyrnbmem bisuKU, enekmpoHiKU ma KOMMromepHUx cucmem, [Hinposcbkul HauioHambHUU
yHieepcumem imeHi Onecs oH4Yapa, npocn. [azapiHa, 72, m. [Hinpo, YkpaiHa, 49000

ORCID: 0009-0000-6624-6028

Bi6niorpadiyHum onuc crarTi: JinteuHos, O., I'py3iH, ., Pponos, M. (2024). MNpo mirpadito npoekTy
3 Domain Driven Design apxitektypoto Ha CQRS ta Event Sourcing. Information Technology: Computer
Science, Software Engineering and Cyber Security, 1, 50-60, doi: https://doi.org/10.32782/IT/2024-1-7

NPO MIFPALIKO NPOEKTY 3 DOMAIN DRIVEN DESIGN APXITEKTYPOIO
HA CQRS TA EVENT SOURCING

Cmamms posenadae npobnemy migpauii do0amkis, 30KkpeMa mux, WO eUKOpUCMO8ytomb apximekmypHul
nioxid Domain-Driven Design (DDD), do napaduemu Command Query Responsibility Segregation (CQRS) 3 Event
Sourcing. [oszo icHyro4i cucmemu Yacmo cmukaromascsi 3 npobremamu, nog'a3aHuUMU 3 HE2HYYKOK0, 3acmapinor
apximeKkmyporo ma 3anexHocmsamu, wo npu3eodsams 00 3binbWeHHs sumpam Ha 06cy208y8aHHS. Y pobomi
posensdaromscs nepesazu DDD ma niporioHyembca CQRS sk xummesdamHa anbmepHamusa, 3 akueHmom Ha
MoKpauweHHi npodykmueHocmi ma macwmabosaHocmi.

OcHosHOl0O Memotro pobomu € ouiHka 6e3rneyHo20 wrsxy Miepauii npoekmy 3 DDD apximekmyporw Ha
apximekmypy CQRS ma Event Sourcing, a makox ausHa4yeHHs 00pOXHbOI Kapmu Miepauil. Y cmammi npogodumscs
eKcriepumMeHm, 8 KoMy 30ilICHIOEMbCS Mi2pau,isi mecmoeo20 MpoeKkmy, OUiHIIMbCS Yac, 3ycusss ma pe3ybmamu
miepauii. Memodornozia 0ocrnidxXeHHs1 8KIMoYae OUIHKY ckrnadHocmi 3a OO0MOMO20I0 MEMPUKU UUKITOMamuy4HoOl
cknadHocmi MakKeliba ma ouiHKy npodykmugHOCMi Yepe3 Yac 8UKOHaHHS Memodie cucmemu.

EkcnepumeHm npoeodumbcsi Ha munog8oMy npoekmi— cucmemi eidcmexeHHs1 3ae0aHb. Pesynbsmamu pearnisauji
CQRS rokasytoms 36irbWeHHs KirlbKocmi Kracie y yomupu pa3u ma Kiribkocmi psidkie kody Ha 50 sidcomkis. OdHak
ue 36inblWeHHs1 € 0brpyHmMoBaHUM, OCKIiflbKU 80HO rokpauw,ye ModyrbHicmb, Npo30picmb ma KepogaHicmb mid yac
PpO3pobKuU, Wo 8 KiHyesomy nidcymKy rnoneawye obciy208y8aHHsI ma, 8 UirloMy, 3Ha4HO Midsuwye npodyKmueHicmab
cucmemu. Bapmo 3a3Haqyumu, wo 3a2asibHa YUKIoMamuyHa cKkiadHicmbe cucmemu mMalxe He 3MiHUIacs.

Midcymoeyrouu, cmamms posensidae ouiHky migpauii npoekmy 3 DDD apximekmypoto Ha CQRS ma Event
Sourcing, noedHyro4YU meopemuyHi 8UCHOBKU 3 MpakmMu4yHUM ekcriepumeHmom. BoHa Hadae UiHHy iHgbopmauito
wodo nepesae, Hedorikie ma sukrukig npu snposadxeHHi apximekmypu CQRS 8 cknadHi iHgpopmauitiHi cucmemu.

Knro4oei cnoea: domeHHO-opieHmosaHul du3saliH, CQRS, Event Sourcing, migpauis apximekmypu.

Background and Literature Review. In the clusters of associated objects treated as a single
market, there is a vast number of applications.  unit for data manipulation and consistency.

These are complex information systems that still An aggregate is the primary entity at the busi-
perform their functions but over time have lost flex-  ness logic level. When there is a request to mod-
ibility, possess outdated architecture, or depend- ify or read data from outside, this request passes
encies. This leads to an increase in the complexity ~ through the controller level and reaches the busi-
and cost of maintaining such systems. ness logic level, which calls the repository to

Many modern applications adopt the Domain-  retrieve the necessary aggregate from the data-
Driven Design (DDD) architecture (Evans, 2004) base. Once the aggregate is loaded into memory,
(Vernon, 2013), a methodology that emphasizes  the necessary methods are invoked to perform
aligning software design with the domain model.  the requested operations, thereby modifying its
DDD revolves around the concept of bounded state according to the business logic encapsu-
contexts, which define clear boundaries within a  lated within the domain model. Subsequently, the
system where specific domain models, terms, and  updated aggregate is saved back to the database,
rules apply coherently. The concept of bounded by the repository (Fig. 1).
contexts (Fowler, 2014) in DDD promotes modular One alternative, when it comes to the archi-
design and clear separation of concerns, allow- tecture of complex information systems, is CQRS
ing different parts of the system to operate inde- (Command Query Responsibility Segregation)
pendently within their designated contexts. Each  with Event Sourcing (Young, 2010; Betts, 2013).
bounded context delineates its language, rules, This approach can be regarded as a derivative of
and semantics, fostering better understandingand  DDD.
communication among team members working Event Sourcing implies the absence of a clas-
within that context. Within these bounded contexts,  sical database, and data is stored in the form of
system entities are identified and organized into  events that represent changes to the system's
aggregates or aggregate roots, which represent state. Events are stored in an Event Store, which

51



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

Repository Database

Requests DB entity by 1D

P
L

DB Entity

A

Saves updated DB entity

[
L

Service Aggregate
Requests Aggregate by ID
Aggregate
Updates state
Saves updated Aggregate
Service Aggregate

Repository Database

Fig. 1. DDD update operation flow

serves as the source of truth for the system. Clas-
sically, when querying an aggregate, the repository
does not simply fetch the required record from the
database but retrieves all events associated with
the relevant instance from the event store. Sub-
sequently, these events are replayed onto a new
entity, resulting in the retrieval of the aggregate
object in its current state.

CQRS, in turn, proposes the separation of
read and write operations at the logic level and
often even at the data storage level. In conjunc-
tion with Event Sourcing, the data processing
process looks as follows (Fig. 2). After the aggre-
gate's state is modified, events about its changes
are saved in the Event Store and also sent to
the Event Bus to notify other parts of the system
about the occurred changes. Individual handlers
are subscribed to specific events and update pro-
jections (6) — denormalized data views prepared
directly for read operations. When a read Query
is requested, the query handler selects pre-pre-
pared data from the database without resorting to
complex aggregation queries or additional data
mappings. This approach adds development com-
plexity but positively impacts the system's perfor-
mance and flexibility.

The advantages of the CQRS with Event
Sourcing architecture compared to DDD (Kenneth,
2013) include improved performance for read and
write requests, as well as better flexibility and

52

scalability due to asynchronous event processing
and reduced risk of conflicts when making changes.
This is because commands that modify data and
queries that read data operate independently of
each other. Another significant advantage is the
instant storage of all events, enabling the system's
state to be restored to any point in time from its
creation to the present.

Task definition. For some systems using DDD
architecture, there arises a need to store events
for monitoring or taking some business solutions,
or enhance flexibility, making the CQRS with
Event Sourcing architecture more suitable for the
system than DDD. For modern information sys-
tems, issues of performance, scalability, and ease
of software maintenance are crucial. The CQRS
architecture provides an innovative methodologi-
cal approach to optimize command and query pro-
cessing in applications, contributing to increased
productivity, scalability, and modularity of systems.
However, alongside the advantages, there are
practical challenges in its implementation, such
as an increase in the number of classes and con-
figuration complexity. Therefore, researching the
practical aspects of applying the CQRS architec-
ture for developing a modern information system,
analyzing and evaluating the pros and cons of this
approach, remains relevant.

The objective of this article is to assess a
secure path for migrating a complex information



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

Chend Dioman Query Harudisr Evmd S Evamnit Bus Eveern] Hanhes Progeciion
Weite Coxnndo
Lo
Shvos Events
Cra or more Everis
Paochse Evadd
_ =
Uipdaie Prgaconn
Rl qussy
Gal PR
FREsponsg
-

oy Damain Cuory Hardios Evont Siaig Event Bus Erverit Hawudor Presaction

Fig. 2. CQRS read/write operations flow

Infrastructure changes
Adding the Command Bus, the
Event Bus and the Event Store

Split services for write operations
onto command handlers

Update controllers for write
operations to use the Command
Bus

Create databases for projections
and event handlers

Update controllers for read
operations to call query handlers

Split services for read operations
onto query handlers

Fill the Event Stare with events and
synchronize it with legacy
database

Update query handles to use data
from projections

Disconnect and stop legacy
database

1L

Fig. 3. DDD to CQRS with Event Sourcing architecture migration flow

system from DDD to the CQRS with Event Sourc-
ing architecture. This article describes the migra-
tion stages. Additionally, it involves conducting
an experiment to migrate the architecture of a
test project and provides an assessment of the
time and results of the migration for a test typical
project.

Main part. The migration of an existing com-
plex information system from DDD to CQRS with
Event Sourcing architecture (Salvatierra, 2013) is
not a simple task and involves several stages.

53

Fig. 3 describes the flow of migration of the
DDD system to a CQRS with Event Sourcing
application. The first step is to make infrastruc-
tural changes, specifically adding the Command
Bus, the Event Store, and the Event Bus. After
implementing these modules, the controller level
and service level (domain) need to be adapted to
work with the new modules. At the service level,
in accordance with the CQRS architecture, it is
assumed that the controller receives a request
from an external client, creates a command, and



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

sends it to the Command Bus. At this stage, it's
essential to decide whether to modify the pub-
lic API of the system. If the public API is going
to change, it's better to do it as early as possi-
ble to give developers of client applications time
to update the communication contract with the
system while the main migration is taking place.
Existing controllers need to be updated in the
following way. Instead of directly calling domain-
level services, controllers responsible for write
operations should create corresponding com-
mands and pass them to the Command Bus and
it means that the Client application cannot receive
the result of the operation in response to the oper-
ation request directly. The domain services then
should be divided and transformed into command
handlers and query handlers. Command handlers
should subscribe to the Command Bus and pro-
cess the corresponding commands. The logic for
read operations is moved into query handlers. The
controllers responsible for performing queries con-
tinue to call these methods to retrieve and pass
data to the client, but now from query handlers. In
result, each application service will be divided into
several handlers depending on its logical load.

In the next stage, databases for denormalized
data views, which query handlers will use for quick
retrieval of necessary responses (projections), are
described and created. Having ready projections
allows creating and testing event handlers, which,
upon receiving corresponding events in the event
bus, will update the projections.

All the previous steps only involved changes
in the code and did not affect the system's data.
The next step of the Cold Turkey migration (Bro-
die, 1995) is migrating data from the normalized
database to the Event Store and shifting the focus
of source-of-truth to the Event Store. Performing
such an operation on a constantly updating system
is a challenging process. Based on Marius Breit-
mayer's work on deriving Event Logs from Leg-
acy Software Systems (Breitmayer, 2023), data
migration occurs as follows: during a maintenance
break, a database dump is made, and the system
is updated to a version in which, in parallel with
the operation of the legacy database, events are
recorded to the Event Store. After launching the
system, based on the available data in the dump,
events of creating existing entities with a timestamp
equal to the creation of a record in the database
are migrated to the event store. Thus, the event
store is synchronized with the legacy database.
After synchronization, another maintenance break
will be required, during which projection databases
will be filled using the event replay algorithm from
the current event store, and the system will be

54

updated to a version in which event handlers are
enabled and update projections.

In the subsequent stages of development, the
logic of query handlers is updated one by one to
work with projections instead of the legacy data-
base. After fully updating the codebase of query
handlers, the last stage of system update is dis-
connecting and stopping the legacy database.

Methods

McCabe Cyclomatic Complexity is a crucial
metric in software engineering that assesses the
complexity of a program by measuring the number
of linearly independent paths through its source
code. Introduced by Thomas J. McCabe (McCabe,
1976), this algorithmic approach has become an
integral part of software quality assessment and
maintenance.

The Cyclomatic Complexity of a program is cal-
culated using the formula 1.

V=E-N+2*P, (1)

where: E — is the number of edges in the flow
graph,

N — is the number of nodes in the flow graph,
and

P — is the number of connected components
(regions) in the flow graph.

The resulting value provides insights into the
program's complexity. Generally, a higher Cyclo-
matic Complexity indicates a higher likelihood of
bugs and maintenance challenges. Various thresh-
olds and guidelines exist to help interpret the com-
plexity score, aiding developers in optimizing and
refactoring their code.

To assess performance, measurements of the
execution time of the system's basic methods are
conducted. The measurements are performed auto-
matically. The method is called in a loop 1000 times,
after which the arithmetic mean is calculated to
determine the average execution time of the method.

Experiment.

The goal of the experiment is to explore the
possibilities of implementing CQRS with Event
Sourcing approach in real projects and to assess
the time and effort required to migrate a project
with a specific volume of code from DDD architec-
ture to CQRS with Event Sourcing. Additionally,
the complexity and performance of the original and
migrated systems will be evaluated and compared.

To achieve the goal, the following tasks need to
be addressed:

e Select a typical project and research meth-
odology.

e Implement a typical project using a con-
ventional approach (without applying CQRS and
Event Sourcing).



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

e Conduct experiments to adapt the devel-
oped project to the CQRS with Event Sourcing
architecture, measuring the time and effort spent
on adaptation.

e Conduct an analysis of the results. Evaluate
the advantages and disadvantages of CQRS with
Event Sourcing architecture, and potential chal-
lenges in its implementation.

As already defined, it is necessary to select
a project with logic that is not overly complex
but includes typical tasks of a real project, to
be developed using the chosen approach. Addi-
tionally, to identify the advantages and disad-
vantages of this approach, a comparison of the
time spent on implementation and modification of
functions with the conventional approach (with-
out using CQRS and Event Sourcing) is required.
The chosen project is a Task Tracking System,
which is a classic sample project for studying the
design and implementation aspects of systems
with a complex application domain. For example,
a similar project is used as a sample in Vernon’s
work (Vernon, 2011).

The application domain of the project is ideally
suited for research because developers do not
need to spend time learning unfamiliar terminology
and business logic. Additionally, this application

Haymnment
an

et .
Chaar
¥ i
=
&
& PepevET
£ Fumtha
o
o
[
Pasitian
=
Progr
©
&
L
-
@
&
M
UnarPropect &
(i i =
+ AL A &
E -
[

domain is not simple, and such a system can con-
tain many functions and capabilities.

The source code for the conducted experiments
is hosted in an open-source repository on GitHub
and is accessible via the link (Frolov, 2023).

TaskTrackingSystem description

To grasp the magnitude of the experimental
undertaking, refer to Figures 4 and 5, which pro-
vide component diagrams and the database struc-
ture of the Domain-Driven Design system. The
system's domain comprises three aggregate roots:
User, Assignment, and Project.

In Figure 4, the component diagram delineates
the relationships between the aggregate roots
and their subordinate entities. The Project aggre-
gate oversees projects and their statuses, while
the Assignment aggregate encompasses assign-
ments and assignment statuses. The User is more
intricate, aggregating users, user projects, and
positions.

Within the Data Access Layer, additional entities
exist, but the overarching structure remains con-
sistent. The primary entities are User, Assignment,
and Project models. Each of these entities main-
tains relationships with other tables, such as Pro-
ject Statuses, Tokens, Positions, etc. Users exhibit
a one-to-many relationship with Assignments and

Braintity
W Claa

L]

cerer

Aagigamentiisflus O

B mamne

Fig. 4. Component diagram of TaskTrackingSystem



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

AspNetUsers
v i

AspNetUserRoles
s T
¥ Rowid

AspNetRoleClaims
¥ o I g e
AspNetUserClaims

CaimType

ClimType

Claimialue

Assignments

i

AssignmentStatuses

8
AspNetUserTokens
¥ Userid

¥ LognProvide

Fig. 5. Database structure of TaskTrackingSystem

a many-to-many relationship with Projects. Addi-
tionally, each project can encompass multiple
assignments.

The TaskTrackingSystem functionality encom-
passes various methods. For the User aggregate,
these include adding, reading, editing, and delet-
ing (CRUD operations) users, reading users with
comprehensive information, CRUD operations for
user roles, and authorization methods like sign-up,
sign-in, and password update. The Assignment
functionality involves assigning users to tasks with
selected positions, CRUD operations for assign-
ments, and assignment statuses. As for the Project
aggregate, it involves simultaneous CRUD opera-
tions for projects and project statuses, along with
operations for adding and removing tasks to/from
the project.

Results of CQRS Implementation

Complexity evaluation

To write the BLL without using the CQRS pat-
tern, it took 12 days, and 47 classes were written
to ensure the full functioning of the business logic
layer.

As seen in Fig. 6, there was initially a growth
in project development in the form of creating
various classes that met the requirements. How-
ever, towards the end of the development, there
were fewer new classes created under new

56

requirements, and the focus shifted to modifying
existing ones. By the 12th day, the majority of
classes contained at least 300 lines of code. In
Fig. 7, it can be observed that when a new require-
ment emerged or a bug requiring modification of a
part of the business logic was detected, it was nec-
essary to check whether the modification affected
other parts of the business logic since everything
was interconnected. In the end, modifying and
maintaining the project required significant effort.

The implementation of the CQRS (Command
Query Responsibility Segregation) pattern resulted
in an increase in the number of classes in the busi-
ness logic from 47 to 213 and required a significant
portion of the expended time (Fig. 8).

At first glance, it may seem that this increase
complicates the system. However, the reason
for this increase is an improved distribution of
responsibilities among system components, which
enhances the modularity of the system, its adapt-
ability to changes, testability, and ensures its ongo-
ing support and development (Fig. 9).

The main advantage of this increase in the num-
ber of classes lies in the separation of responsibili-
ties between commands and queries. Commands,
responsible for changing the system's state, and
queries providing data access are placed in dis-
tinct classes. This allows for better manageability



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

i

ca

[ =9

Amount of classes
LN

LN

un

5]
=
=
k
ra

Days

Fig. 6. The dependence of the number of classes on the number of development days
for DDD approach implementation

Lines of code

Days

Fig. 7. The dependence of the development and maintenance cost coefficient on the number
of development days for DDD approach implementation

during development, as it becomes more transpar-
ent and modular.

Although it may seem that this leads to an
increased workload during implementation, it ulti-
mately facilitates system maintenance. By sep-
arating commands and queries, each class is
responsible for specific functionality. This simpli-
fies debugging, extension, and adding new func-
tionality without the need to edit large code blocks,

57

as the largest classes now contain no more than
50 lines of code.

This is also confirmed by cyclomatic complex-
ity metrics, calculated for the whole project using
SonarCloud (14). Table 1 shows the metrics for
the system with DDD architecture and CQRS with
Event Sourcing architecture. Despite the increase
in the number of classes and the addition of mod-
ules such as Command Bus, Event Bus, and Event



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

100

Amount of classes

-]

3

Fig.

-

Lr

S

Days

8. The dependency between the number of classes and the development days

including migration to CQRS and Event Sourcing approach

Lines of code

Ln

Fig. 9.

Days

The relationship between the lines of code and the number of development days

including migration to CQRS and Event Sourcing approach

Store, the overall complexity of the system after
migration to CQRS with Event Sourcing architec-
ture became even lower. Thus, the total number
of lines of code for the DDD architecture option
amounted to slightly over three thousand with a
total cyclomatic complexity of 534, while for CQRS
with Event Sourcing, it was 4,620 with a complex-
ity of 522.

58

However, if the project lacks complex business
logic and there are no prospects for its complica-
tion, the time and effort spent on developing com-
plex infrastructure and system functions may not
be justified. That is, the time and effort in devel-
oping such a project with a conventional architec-
ture will be significantly less than in the case of
applying CQRS, and the benefits of supporting a



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

Table 1
Complexity metrics
Metric DDD CQRS with Event Sourcing
Lines of code 3101 4 620
Overall Cyclomatic complexity 534 522
Business Logic Layer Cyclomatic complexity 312 285
Data Access Layer Cyclomatic complexity 133 157
Web API Cyclomatic complexity 89 80
Table 2
Performance evaluation. Function response time
Method DDD (time ms.) CQRS with Event Sourcing (time ms.)
getUsers 281 43
addUser 28 48
updateUser 119 46
deleteUser 71 52
getUser 37 37

complex system provided by the CQRS approach
may be nullified.

Performance evaluation

Table 2 provides a comparison of the average
execution speed across 1000 requests for basic
methods for the case of applying the CQRS with
Event Sourcing architecture and DDD architec-
ture. To reduce experimental error, the database
was replaced with a mock object containing static
data.

Reading the list of users (getUsers): The use
of CQRS significantly accelerated the operation of
retrieving the list of users, reducing the execution
time from 281 to 43. This demonstrates the effec-
tiveness of separating read and write operations.

Adding a new user (addUser): Although the
addition operation became slightly slower with the
use of CQRS, this may be compensated by other
advantages of the architecture in the future.

Updating a user (updateUser): Applying CQRS
resulted in a significant reduction in the execution
time of the updateUser operation, reducing it from
119 to 46.

Deleting a user (deleteUser): With the use
of CQRS, the execution time of deleting a user
became slightly faster, decreasing from 71 to 52.

Getting a specific user (getUser): The execu-
tion time of the operation to retrieve a specific user
remains stable with both approaches.

Summary. The work investigated the imple-
mentation of the CQRS with Event Sourcing
architecture in the already developed TaskTrack-
ingSystem. A performance comparison was made
between systems with and without the architec-
ture, and the time costs of migrating the system to
the new architecture were evaluated.

The analysis of the research results indicates
a significant impact of implementing CQRS with
Event Sourcing architecture on the system's effi-
ciency. In particular, the getUsers method demon-
strated a noticeable reduction in execution time
from 281 ms to 43 ms after the architecture's intro-
duction. On the other hand, the addUser method
showed an increase in execution time from 28 ms
to 48 ms. The data analysis also shows that the
implementation of CQRS significantly affects the
cost coefficient. Without considering the days of
CQRS implementation, the coefficient gradually
increases depending on the development duration
due to the system's complexity. With the introduc-
tion of CQRS, there is a sharp increase in the coef-
ficient on the 13th day, after which it stabilizes and
becomes lower than when CQRS was not used.
The overall dynamics of the cost coefficient show
a systematic increase without the implementation
of CQRS, depending on the development duration.
After the introduction of CQRS, project mainte-
nance costs are stable.

BIBLIOGRAPHY:
1. Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software, 2004. ISBN:

978-0321125217.

2. Vernon V. Implementing Domain-Driven Design, 2013. ISBN: 978-0321834577.
3. Fowler M. Bounded Context, 2014. URL.: https://martinfowler.com/bliki/BoundedContext.html.

59



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2024

4. Young G. CQRS Documents by Greg Young, 2010. Pages: 50-52. URL: https://cqrs.files.wordpress.
com/2010/11/cqrs_documents.pdf.

5. Betts D. Dominguez J. Melnik G. Simonazzi F. Subramanian M. Young G. Exploring CQRS and Event
Sourcing: A journey into high scalability, availability, and maintainability with Windows Azure, 2013. ISBN:
978-1621140160.

6. Practical and focused guide for survival in post-CQRS world. Projections. URL: http://cqrs.wikidot.com/
doc:projection.

7. Kenneth T. Introduction to Domain Driven Design, CQRS and Event Sourcing, 2013. URL: https://www.
kenneth-truyers.net/2013/12/05/introduction-to-domain-driven-design-cqrs-and-event-sourcing/.

8. Salvatierra G. Mateos C. Crasso M. Legacy System Migration Approaches, 2013. DOI: 10.1109/
TLA.2013.6533975.

9. Brodie M. L. Stonebraker M. Ai S. DARWIN: On the Incremental Migration of Legacy Information Sys-
tems, 1995.

10. Breitmayer M. Arnold L. La Rocca S. Reichert M. Deriving Event Logs from Legacy Software Systems,
2023. DOI: 10.1007/978-3-031-27815-0_30.

11. McCabe T. J. A Complexity Measure, 1976. DOI: 10.1109/TSE.1976.233837.

12. Vernon V. Effective Aggregate Design, 2011. Parts | — IlI.

13. Frolov M. TaskTrackingSystem repository on GitHub, 2023.

14. SonarCloud Online Code Review as a Service Tool. URL: https://sonarcloud.io/.

REFERENCES:

1. Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software. ISBN:
978-0321125217.

2. Vernon, V. (2013). Implementing Domain-Driven Design. ISBN: 978-0321834577.

3. Fowler, M. (2014). Bounded Context. Retrieved from: https://martinfowler.com/bliki/BoundedContext.
html.

4. Young, G. (2010). CQRS Documents by Greg Young. Pages: 50-52. Retrieved from: https://cqrs.files.
wordpress.com/2010/11/cqrs_documents.pdf.

5. Betts, D., Dominguez, J., Melnik, G., Simonazzi, F., Subramanian, M. & Young, G. (2013). Exploring
CQRS and Event Sourcing: A journey into high scalability, availability, and maintainability with Windows Azure.
ISBN: 978-1621140160.

6. Practical and focused guide for survival in post-CQRS world. Projections. Retrieved from: http://cqrs.
wikidot.com/doc:projection.

7. Kenneth, T. (2013). Introduction to Domain Driven Design, CQRS and Event Sourcing. Retrieved from:
https://www.kenneth-truyers.net/2013/12/05/introduction-to-domain-driven-design-cqrs-and-event-sourcing/.

8. Salvatierra, G., Mateos, C. & Crasso, M. (2013). Legacy System Migration Approaches. DOI: 10.1109/
TLA.2013.6533975.

9. Brodie, M., L. & Stonebraker, M., Ai, S. (1995). DARWIN: On the Incremental Migration of Legacy Infor-
mation Systems.

10. Breitmayer, M., Arnold, L., La Rocca, S. & Reichert, M. (2023). Deriving Event Logs from Legacy Soft-
ware Systems. DOI: 10.1007/978-3-031-27815-0_30.

11. McCabe, T., J. (1976). A Complexity Measure. DOI: 10.1109/TSE.1976.233837.

12. Vernon, V. (2011). Effective Aggregate Design. Parts | — III.

13. Frolov, M. (2023). TaskTrackingSystem repository on GitHub.

14. SonarCloud Online Code Review as a Service Tool. Retrieved from: https://sonarcloud.io/.

60



