
61

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

UDC 681.327.12.001.362
DOI https://doi.org/10.32782/IT/2024-1-8

Borys MOROZ
Doctor of Technical Sciences, Professor of Department of Software Engineering, Dnipro University
of Technology, 19, Dmytra Yavornytskoho ave., Dnipro, Ukraine, 49000, moroz.boris.1948@gmail.com
ORCID: 0000-0002-5625-0864
Scopus Author ID: 57202222055

Leonid KABAK
PhD, Associate Professor of Department of Software Engineering, Dnipro University of Technology, 19, Dmytra
Yavornytskoho ave., Dnipro, Ukraine, 49000, kabak.leo@gmail.com
ORCID: 0000-0001-6267-1772
Scopus Author ID: 5720222205

Dmytro MOROZ
PhD, University Lecturer of Department of Software Engineering, Dnipro University of Technology, 19, Dmytra
Yavornytskoho ave., Dnipro, Ukraine, 49000, dmitriy@moroz.cc
ORCID: 0000-0003-2577-3352
Scopus Author ID: 57369936300

Yevhenii RUKSOV
Master, Dnipro University of Technology, 19, Dmytra Yavornytskoho ave., Dnipro, Ukraine, 49000,
euruksov@gmail.com

To cite this article: Moroz, B., Kabak, L., Moroz, D., Ruksov, E. (2024). Metody predstavlennia
3D-obiektiv dlia navchannia heneratyvnykh neironnykh merezh [Methods of representation of 3D objects
for learning generative neural networks]. Information Technology: Computer Science, Software
Engineering and Cyber Security, 1, 61–72, doi: https://doi.org/10.32782/IT/2024-1-8

METHODS OF REPRESENTATION OF 3D OBJECTS
FOR LEARNING GENERATIVE NEURAL NETWORKS

The paper considered various methods of three-dimensional objects generating by using of neural networks.
Several key elements of the methodologies of this type of synthesis of new information were singled out, on the basis
of which a new way of three-dimensional objects representing was proposed for its use for typical generative models
of neural networks training.

The purpose of the work is to develop a method of representing of three-dimensional objects that would
satisfy the criterion of high density of information useful for a generative model. The minimization of the redundancy
of the information generated together with the minimization of the losses associated with the process of transition from
a three-dimensional way of representing of an object to a two-dimensional one (with which the existing generative
models can cope quite well) are the key aspects of the proposed method of representation.

The methodology for solving of the problem given consists in building of a mathematical model of a new type
of representation of three-dimensional objects; development of a software algorithm that implements a mathematical
model; and testing this representation based on a typical generative neural network model.

The scientific novelty is that for the first time such a type of representation of a three-dimensional object was
proposed, which could be used for typical generative models training.

Conclusions. The proposed method of representing of a three-dimensional object showed its viability even in
the context of training of a small typical generative model DCGAN. Prospects for further research of the proposed
method for training of other typical generative models were also determined, because this method could be quite
easily adapted to representations of input and output data of a wide range of neural network architectures.

Key words: three-dimensional objects, DCGAN models, generative neural network models, generative
competitive networks, variational autoencoders.

62

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

Борис МОРОЗ
доктор технічних наук, професор кафедри програмного забезпечення комп’ютерних систем,
Національний технічний університет «Дніпровська політехніка», просп. Яворницького, 19, м. Дніпро,
Україна, 49005
ORCID: 0000-0002-5625-0864
Scopus Author ID: 57218242332

Леонід КАБАК
кандидат технічних наук, доцент, доцент кафедри програмного забезпечення комп’ютерних систем,
Національний технічний університет «Дніпровська політехніка», просп. Яворницького, 19, м. Дніпро,
Україна, 49005
ORCID: 0000-0001-6267-1772
Scopus Author ID: 5720222205

Дмитро МОРОЗ
доктор філософії, викладач програмного забезпечення комп’ютерних систем, Національний технічний
університет «Дніпровська політехніка», просп. Яворницького, 19, м. Дніпро, Україна, 49005
ORCID: 0000-0003-2577-3352
Scopus Author ID: 57369936300

Євгеній РУКСОВ
студент кафедри програмного забезпечення комп’ютерних систем, Національний технічний
університет «Дніпровська політехніка», просп. Яворницького, 19, м. Дніпро, Україна, 49005

Бібліографічний опис статті: Мороз, Б., Кабак, Л., Мороз, Д., Руксов, Є. (2024). Методи
представлення 3D-об’єктів для навчання генеративних нейронних мереж. Information Technology:
Computer Science, Software Engineering and Cyber Security, 1, 61–72, doi: https://doi.org/10.32782/
IT/2024-1-8

МЕТОДИ ПРЕДСТАВЛЕННЯ 3D-ОБ’ЄКТІВ ДЛЯ НАВЧАННЯ
ГЕНЕРАТИВНИХ НЕЙРОННИХ МЕРЕЖ

У роботі були розглянуті різні методи генерування тривимірних об’єктів за допомогою нейронних
мережі. Було виокремлено ряд ключових елементи методологій такого типу синтезу нової інформації, на
основі чого була запропонований новий спосіб представлення тривимірних об’єктів для його застосування
в навчанні типових генеративних моделей нейронних мереж.

Метою роботи є розробка такого методу представлення тривимірних об’єктів, який задовольняв би
критерію високої щільності корисної для генеративної моделі інформації. Мінімізація надлишковості гене-
рованої інформації разом з мінімізацією втрат, пов’язаних з процесом переходу з тривимірного способу
представлення об’єкта в двовимірний (з яким існуючі генеративні моделі здатні впоратись доволі якісно),
є ключовими аспектами запропонованого методу представлення.

Методологія вирішення поставленої задачі полягає в побудові математичної моделі нового типу пред-
ставлення тривимірних об’єктів; розробці програмного алгоритму, який реалізує математичну модель;
та тестуванні цього представлення на базі типової генеративної моделі нейронної мережі.

Наукова новизна полягає в тому, що вперше був запропонований такий тип представлення тривимір-
ного об’єкта, який можливо використовувати для навчання типових генеративних моделей.

Висновки. Запропонований метод представлення тривимірного об’єкта показав свою життєздат-
ність навіть в контексті навчання маленької типової генеративної моделі DCGAN. Також були визначені
перспективи подальших досліджень запропонованого методу для навчання інших типових генеративних
моделей, адже цей метод може бути досить легко адаптований до представлень вхідних та вихідних
даних великого спектру архітектур нейронних мереж.

Ключові слова: тривимірні об’єкти, моделі DCGAN, генеративної моделі нейронної мережі, генератив-
ні змагальні мережі, варіаційні автокодувальники.

Urgency of the problem. In recent years,
generative models based on deep learning have
attracted increasing interest due to significant

advancements in this field. Leveraging vast
amounts of data, well-designed network archi-
tectures, and intelligent training methods, deep

63

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

generative models have demonstrated incredible
ability to create highly realistic content across var-
ious domains, such as images, texts, and sounds.
Among these deep generative models, two main
groups stand out and deserve special attention:
Generative Adversarial Networks (GANs) and Var-
iational Autoencoders (VAEs).

Analyses of Recent Research and Publica-
tions. The Generative Adversarial Network (GAN),
developed by Ian Goodfellow and colleagues in
2014 (Goodfellow, 2014), represents a machine
learning method where two networks – the gen-
erator and discriminator – engage in a «zero-sum
game». The generator aims to replicate the distri-
bution of the training data, while the discriminator
assesses whether an input sample is real or syn-
thesized. Training the generator model involves
maximizing the probability of the discriminator
misclassifying samples. These networks are mul-
ti-layer perceptrons trained using the standard
backpropagation method. An important aspect
of such networks is also normalizing input data
to effectively handle large images, particularly
through convolutional neural networks (CNNs).

The Variational Autoencoder (VAE) is a type
of autoencoder that regulates the distribution of
encodings during training to preserve properties
of the latent space that facilitate the generation of
new data. This approach is based on the principles
of variational inference, allowing VAE to effectively
reduce the dimensionality of data through encod-
ing and decoding processes. A variational autoen-
coder learns to encode input as a distribution in the
latent space rather than a single point, aiding in
preserving the structure of data during the genera-
tion of new samples. Training a VAE involves min-
imizing a loss function consisting of reconstruction
and regularization terms, with the latter ensuring
the organization of the latent space using the Kull-
back-Leibler divergence (Description of the work-
ing principle of the VAE model, 2019).

Methods of representing 3D objects
The next important aspect of this work is the con-

struction of three-dimensional (3D) objects. The field
that deals with creating objects of this type of graph-
ics is called 3D modelling. There are several meth-
odologies for creating three-dimensional models:

1. Polygon Mesh – a set of vertices, edges, and
faces that form surfaces of an object in 3D space.
The Polygon Mesh is one of the most common meth-
ods for representing 3D models. It utilizes polygons
(typically triangles or quadrilaterals) to approximate
the surfaces of the object. This method allows for
representing various details of an object but can
be demanding in terms of the number of polygons,
especially for complex models.

2. Solid Modelling – method that uses mathe-
matical primitives (such as cubes, spheres, cones,
etc.) to create 3D objects is known as procedural
modelling.

3. NURBS (Non-Uniform Rational B-Splines) –
a mathematical method for representing curves
and surfaces in 3D space.

4. Point Clouds – collections of 3D coordinates
that represent the surface of an object or environ-
ment. They are used in scanning real-world objects
to create accurate 3D models.

5. Voxel Grids – three-dimensional counter-
parts to pixels in two-dimensional space. Voxel
Grids divide 3D space into evenly spaced volumet-
ric elements, known as voxels.

6. Spline Surfaces – a method that uses math-
ematical splines (patches or pieces) to create sur-
faces.

7. Constructive Solid Geometry – a method
that uses addition, subtraction, and intersection
operations to create complex 3D objects by com-
bining simple geometric shapes such as cubes,
cylinders, and cones.

To accomplish the set task, Polygon Mesh
method was chosen. There are several types of
Polygon Mesh, including Triangle Mesh, Quadri-
lateral Mesh, Polyhedron Mesh, Quad-Dominant
Mesh, Mixed-Topology Mesh, Delaunay Triangula-
tion, Regular Grid. In the proposed representation
method, the triangular version will be used.

Also, there are several forms of storing informa-
tion about vertices, edges, and surfaces, among
the most common ones:

1. Vertex List – this method is quite simple, but
it does not provide fast access to neighboring ver-
tices.

2. Edge List – this method provides detailed
information about the mesh topology but con-
sumes a lot of memory and is inefficient for pro-
cessing.

3. Face List – this method is typically used for
storing surfaces in triangle meshes, but its effi-
ciency is questionable.

4. Adjacency List – this method allows for
quickly finding neighbors for each vertex, which is
useful for certain operations.

5. Adjacency Matrix – large matrices can
be memory-inefficient but provide fast access to
neighbours.

6. Half-Edge Structure – often used to optimize
mesh operations but requires more memory for
storage.

7. Prism Structure – this structure is based on
dividing the mesh into layers, where each layer
has vertices and edges. It is useful for represent-
ing objects with internal structure.

64

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

8. Edge Mesh – in this structure, edges are
stored as separate objects, and faces are repre-
sented by pointers to edges. It can be useful for
handling different types of faces without the need
for conversion (A general description of the exist-
ing methods of presenting three-dimensional mod-
els, 2012).

It is also important to note the main file formats
for 3D models:

1. STL (Stereolithography) is a format that is
approximated by large triangles and is used for
exchanging finished 3D models. It is very simple
and suitable for 3D printing but does not contain
any information about textures or the colour of the
model.

2. OBJ (Wavefront Object) is a text format that
can contain geometric data, textures, materials,
and normals. It is supported by many 3D model-
ling and visualization programs and is widely used
in computer graphics.

3. FBX (Filmbox) is an open format developed
by Autodesk that supports the exchange of infor-
mation between various programs for 3D model-
ling and animation. It can contain geometric data,
textures, animations, and other attributes.

4. Collada is an open XML format for exchang-
ing information between programs for 3D model-
ling, animation, and rendering. It supports geomet-
ric data, textures, materials, cameras, lights, and
animation.

5. 3DS (3D Studio Max) is a format developed
for the 3D Studio Max software. It is supported by
many programs and can contain geometric data,
textures, materials, and animation. However, this
format has limited support for modern features.

6. PLY (Polygon File Format) is a format used
for storing triangle meshes. It has a simple structure
and can contain textures, colours, and normals.

7. DXF (Drawing Exchange Format) is a text
format developed by Autodesk, aimed at exchang-
ing geometric data. It is widely used in CAD pro-
grams to exchange data between programs from
different manufacturers.

8. IGES (Initial Graphics Exchange Specifica-
tion) is a standard format for exchanging geomet-
ric data between different CAD and CAM systems.
It is not limited to triangles and can contain many
types of geometric objects (Description of the most
popular file formats for 3D objects, 2022).

9. USD (Universal Scene Description) is an
open and high-performance format for represent-
ing and exchanging 3D scenes and animations. It
is developed by Pixar and widely used in renowned
film studios and in the visualization industry. USD
supports various types of geometric and ani-
mated objects, materials, lights, and other scene

attributes. It allows for efficient management of
complex scenes and assets, providing high perfor-
mance during data exchange between programs
and workflows (Official documentation for Univer-
sal Scene Description, 2021).

The USD format was specifically chosen for
this research, because it has a convenient textual
structure that is easily processed using the Java
programming language.

The application of generative models for
creating 3D objects

The Variational Autoencoder (VAE) is highly
valued for its elegance, theoretical appeal, and
ease of implementation. It is considered one of the
leading methods in generative modelling, produc-
ing excellent results. However, a limitation of VAEs
trained on images is that the generated samples
may be blurry, and the precise reasons for this
phenomenon remain unknown.

Nevertheless, the structure of VAE can be
extended to various types of architectures, making
it suitable for building a wide range of probabilis-
tic models. One notable advantage of VAE is that
training both the encoder and decoder simultane-
ously encourages the model to learn a coherent
coordinate system that the encoder can capture,
making it effective for diverse learning tasks.

The fundamental principle of Generative Adver-
sarial Networks (GANs) is to focus on models that
are not restricted solely by maximum likelihood,
thus eliminating destructive divergences between
different models. In GAN training, it is critically
important to strike a balance between the power of
the generator and the discriminator. In cases where
the discriminator proves to be extremely efficient,
the generator may face difficulties in detecting gra-
dients. Conversely, an advantage for the generator
may lead to the detection of weak points in the dis-
criminator, resulting in false recognitions. Adjusting
the learning rates of both networks can address
these issues.

Although GANs were initially proposed for
unsupervised learning, they have found wide appli-
cations in semi-supervised learning, supervised
learning, and reinforcement learning. A plethora
of GAN variations has been developed, including
DCGAN, SRGAN, VAE-GAN, WGAN, CycleGAN,
and StyleGAN, each characterized by its unique
features and applications.

These two technologies also have applications
for generating three-dimensional models, not just
two-dimensional images.

Specifically, in the article dedicated to the
3D-GAN model (Jiajun Wu, 2017), the possibility
of applying a Generative Adversarial Network for
creating three-dimensional objects is explored for

65

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

the first time. This approach exhibits a sufficiently
high quality of generated objects. Essentially, it
is a classic DCGAN model (Goodfellow, 2014),
as described in the previous section, but with an
additional dimension in the image to represent
the three-dimensional shape (without colour) of
the object. The authors of the article apply all the
classic tools and methodologies to create such a
generative model. Additionally, the authors provide
a description and test results of extending their
3D-VAE-GAN model, which allows generating its
three-dimensional version based on a two-dimen-
sional image of an object. Here, a combination of
VAE and GAN technology is applied on the scale
of 3D objects.

Overall, the article provides a fairly broad over-
view of a new type of generative models. It has
served as the foundation for further research in
this field. However, the 3D-GAN model has sev-
eral drawbacks:

1. A large volume of information is gener-
ated and processed through the folding-unfold-
ing process, much of which is redundant, as this
model operates in voxel space (in other words,
3D pixels).

2. The focus on filling a certain volume of
space rather than the shape of the object. In other
words, the model generates volume, not shape.
This results in a loss of the integrity of the form in
some generated samples.

In another article dedicated to the Shape-
VAE model (Nash, 2017), a somewhat different
approach to generating three-dimensional objects
is described. The central element of this model
is the VAE technology. Unlike the previously dis-
cussed work, this model generates a so-called
«point cloud» at the output instead of a voxel space.
The authors provide a fairly detailed description of
the proposed model's operation, and the results
demonstrate a quite decent quality of the gener-
ated objects. The authors also make assumptions
about the future improvement of the model using
GAN (but without specifics).

However, the ShapeVAE model also has some
drawbacks:

1. The VAE technology itself has the drawback
of blurriness in the generated image, and in this
model, the authors did not manage to avoid this
issue, as they also note in their article.

2. Generating a «point cloud» leads to an
excess of output data, although it is somewhat less
than in voxel space.

The described models are early applications
of VAE and GAN technologies for generating
three-dimensional objects. However, further works
have proposed more refined versions of these

approaches. Additionally, some studies have sug-
gested alternative representations of the output
data, improving parameters such as data redun-
dancy, processing speed, learning efficiency, and
the quality of generated 3D object samples. Let's
explore some of these advancements.

There is a model called AtlasNet (Groueix,
2018), which applies an interesting approach to
generating a mesh based on a set of two-dimen-
sional patches that are assembled into a three-di-
mensional object according to certain rules. In this
model, one can clearly see the authors' inspiration
from UV representations of surfaces, commonly
used to shape the texture topology in various for-
mats for representing three-dimensional objects.
The authors themselves acknowledge this in their
paper: «Inspired by the formal definition of a sur-
face as a topological space locally reminiscent of a
Euclidean plane, we aim to locally approximate the
target surface by mapping a set of squares onto
the surface of the 3D shape» (Groueix, 2018). This
approach is quite similar to atlases in geography.

This model has many advantages compared to
the previous two. Here, it operates directly on the
shape surface rather than the filled volume, signif-
icantly improving the quality of object generation.
However, this model has one drawback – the use
of somewhat outdated and less efficient neural net-
work topology, specifically a multi-layer perceptron
(MLP). This significantly affects the training speed
of such a model and carries the risk of overfitting if
hyperparameters are not properly tuned.

Another model is the so-called «Multi-Reso-
lution Tree-like Network» (MRTNet) (Gadelha,
2018), capable of generating «point clouds». This
model is based on VAE, so it is quite similar to
the ShapeVAE model. It can be considered as an
improved and optimized version of ShapeVAE,
operating on a regular point list. Overall, the draw-
backs of this model are similar to ShapeVAE but
with less significant manifestations.

Regarding the representation of «point clouds»,
there is another notable model – PointFlow (Guan-
dao Yang, 2019). This model proposes represent-
ing the «point cloud» as a probability distribution
of values along three coordinates. The underlying
network topology is still based on VAE, but the
principle of generation (and accordingly the model
training algorithm) of a three-dimensional object
differs somewhat from ShapeVAE and MRTNet.
Here, the authors applied a series of complex alge-
braic and probabilistic manipulations with the data,
improving the quality and accuracy of generation
and mitigating the negative effect of VAE technol-
ogy. However, some other GAN-based models still
show better results on certain training data sets.

66

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

Overall, there are many different approaches to
generating «point clouds». In a meta-study (Achli-
optas, 2018) that compares various existing meth-
ods based on different models and technologies,
the authors concluded that the best technology for
generating three-dimensional objects is the Gauss-
ian Mixture Model (GMM), which was to some
extent applied in the PointFlow model. In general,
generative models based on the representation of
«point clouds» have been thoroughly investigated
and have a wide representation of various ideas.

The development of research in the field of gen-
erative models for representing three-dimensional
objects in the form of a mesh has not been as rapid
as the advancements in technologies related to
«point clouds». However, there are some devel-
opments in this area, such as the PolyGen model
(Nash, 2020). It consists of two components: an
unconditional vertex generator and a conditional
surface generator. The model is based on recur-
rent neural network architectures.

Advantages of the PolyGen model include:
1. Generation of mesh, providing a reasonably

acceptable level of correspondence between the
model and the shape of the 3D object.

2. The ability to simultaneously generate differ-
ent types of polygons in the mesh.

Disadvantages of this model include:
1. Complex architecture with recurrent connec-

tions, leading to difficulty in implementation and
deployment of the model.

2. Complex training algorithm for the model.
Among all of the models considered, this model

is the closest to the proposed idea of representing
a 3D object for use in generative models.

In general, the complexity of working with a
mesh is primarily related to the high level of heter-
ogeneity of the generated elements, complicating
the construction of an efficient way to represent
mesh data without loss.

Let's consider another more exotic way of
representing 3D objects, using the example of
Occupancy Networks (Mescheder, 2019). This
is a novel approach to representing a 3D object,
involving the direct mapping of the object in space
as a function of multiple arguments that a neural
network must approximate. This function is called
the occupancy function. In such a model, there is
no discrete division of space (as in voxel space),
or a discrete set of points (as in a «point cloud»),
or a discrete set of surface elements (as in mesh);
instead, the authors of the Occupancy Networks
propose a continuous representation of the sur-
face. Moreover, they ensure that such a rep-
resentation method does not significantly impact
memory load and algorithm speed.

In general, this method of representing a 3D
object has broad prospects, as the main advan-
tage is the relatively high quality of surface approx-
imation. Although the authors of the PolyGen
model (Nash, 2020), who compared their model
with Occupancy Networks, note a decrease in the
quality of such a model in representing smooth
surfaces (such as a table).

The purpose of the article is to develop a
method for representing 3D objects that satisfies
the criterion of high density of information useful
for generative models. Minimizing the excess of
generated information along with minimizing the
losses associated with the transition from a 3D rep-
resentation of the object to a 2D one (with which
existing generative models can cope quite qualita-
tively) are key aspects of the proposed POLY-IM-
AGE method.

Presentation of the main material.
DESCRIPTION OF THE POLY-IMAGE

METHOD
Justification of the chosen methods
Based on the developments in the field of gen-

erating three-dimensional objects, this task can be
divided into several important aspects:

1. Generative Model Architecture.
2. Representation Method of Three-dimen-

sional Object.
Various architectures have been considered for

this task, including GAN (and its variations), VAE (and
its variations), GMM, and various recurrent architec-
tures. Each approach has its own advantages and
disadvantages and can be applied with varying lev-
els of efficiency for different representation methods.
These two aspects are undoubtedly closely related.
In the field of neural network architecture, there is
already a sufficient foundation of research and solu-
tions. Therefore, this work will not propose something
entirely new in terms of model architecture.

Instead, in terms of the representation method,
there are many different directions that are still not
sufficiently explored. Most techniques are based
on memory consumption efficiency, which is the
main criterion for performance quality. From the
perspective of surface approximation quality, each
method has its application depending on the topol-
ogy of the surface itself. In general, the triangu-
lar mesh is considered the most optimal method,
taking into account both memory aspects and the
quality of approximating various types of surfaces.

Moreover, the mesh representation format in
USD files is quite convenient for computations.
This format consists of simple arrays of numbers
that have a specific relationship with each other
(this will be described in more detail in the next
section). Another advantage of this format is that it

67

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

is simply a text file, easily readable from any pro-
gramming language. Generating such a file based
on only a certain part of it (such as a sequence of
point indices) is a relatively trivial task for a regular
deterministic linear algorithm.

To verify the application of the proposed mesh
representation method for the training model, a
DCGAN model will be used to generate two-di-
mensional images, similar to what was applied in
my previous work dedicated to generating paint-
ings (Ruksov, 2022).

In general, the proposed mesh representation
method can be used with other generative mod-
els. In theory, recurrent neural networks might be
the best architecture for such representation, as
they allow generating and recognizing data of any
dimension. This work will consider a limited ver-
sion of the proposed mesh representation, but it
can be expanded and unified.

To implement the set task, the programming
languages Java and Julia were chosen. The rea-
sons for this choice are detailed in the first section.

Mathematical model
The main feature of the proposed model lies in a

new way of representing data input for the discrim-
inator and output for the generator. Most existing
models (as detailed in the previous section) sug-
gest overly redundant representations of gener-
ated data. Specifically, voxel space, point clouds,
vector representations of meshes, occupancy
functions, and others all require neural networks
to process unnecessary information, potentially
complicating the organization of efficient training
for large models of this type.

Additionally, such representations do not focus
directly on the shape of three-dimensional objects.
To draw an analogy on a smaller scale and with
a simple type of model, consider a basic classifier
for two-dimensional images. After training, a neural
network can recognize certain shapes and colors of
objects in two-dimensional space, even though the
object may have different sizes, positions in space,
may be modified, and so on. Thus, the model finds
a specific pattern of object characteristics in two-di-
mensional space, realizing the ability to classify
images. Extrapolating this representation to high-
er-dimensional data, the shape of the three-dimen-
sional object's surface is crucial for effective classi-
fication. The internal content (what is beneath the
surface of the object) obviously does not carry any
useful information for the neural network. Moreo-
ver, the surrounding space is also redundant.

In the previous section, several arguments were
presented in favor of using mesh as a sufficiently
effective way to approximate the surface. It's worth
adding that mesh itself has redundant data, which

can be processed and transformed into the final
«consumer» state using conventional algorithms
and classical mathematical transformations.

The method of simplifying the representation of
the mesh was invented based on the structure of
the file format for 3D scenes USD. In this format,
the representation of the mesh consists of four
main elements:

1. Arbitrary (unsorted) set of points with coor-
dinates in 3D space, which are the vertices of the
mesh.

2. Array of dimensions for each mesh patch.
3. Array of sequential numbers (indices) of ver-

tex points of the mesh (has a clear order of values
in correspondence with the previous two elements).

4. Array of points corresponding to the normals
of the mesh (not considered in this work).

From such a simple way of describing a mesh,
you can create the following model for represent-
ing the shape of a three-dimensional object. The
first important element of the model is the discrete
space, bounded by values for all three coordinates
in the range [-1; 1]. Let's denote this space as an
indexed set:

P Ai i I
� � ��

, (1)

where I is the set of indices for which I⊆N;
A is the indexed discrete set of points.
For the levels of discretization within a single

cube, it can be arbitrary, and it determines the
quality and accuracy of the generated object.

Let's specify the essence of the surface f within
the indexed space:

f a b c a b c I� � � �� �, , : , , , (2)

where f ∈ F, F – is the set of all possible sur-
faces.

In scope of this work, a triangular mesh is con-
sidered, so the surface in it is an ordered set of
three indices.

Next, let's specify the essence of the mesh
within the proposed model:

m Fm= , (3)

where Fm ⊂ F – is a subset of surfaces.
Now, based on this model of mesh representa-

tion, we can build a scheme for mapping this rep-
resentation to a two-dimensional image, which will
be generated by the neural network.

Two-dimensional images are matrices of pix-
els, each of which represents an ordered set of
three brightness values in the RGB scheme. Each
pixel can be considered as a point in three-dimen-
sional space. In this case, the entire image can
be represented as a point cloud. However, with
such a representation, some information about the

68

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

arrangement of each pixel in the image matrix is
lost. To address this issue, the point cloud needs to
be indexed, and it will have two indices:

 U Xr k r R k K
� � �

� �, ,
, (4)

where X – is point cloud;
R – is a set of indices per row of the image

matrix;
K – is a set of indexes on the column of the

matrix.
Now, based on such a representation of a

two-dimensional image, we can replace the stand-
ard RGB scheme for pixels with a model repre-
senting mesh surfaces, as indicated in expression
(2). Thus, the point cloud X will be a set of tuples f,
so that f ∈ X, and X = F.

To determine the sets of indices R and K,
additional attributes for each surface need to be
defined.

Firstly, it is necessary to determine the aver-
age point (or center of mass Of) for each surface.
As known, the center of mass of a triangle is the
point of intersection of all three medians of the tri-
angle. To calculate this, the following formulas are
applied:

 O x y z

x
x x x

y
y y y

z
z z z

f f f f

f
a b c

f
a b c

f
a b c

, ,� � �

�
� �

�
� �

�
� �

�

�

�
�
�

�

�
�
�

3

3

3

,, (5)

where xf, yf, zf – are the coordinates of the cen-
tre of mass of the surface f.

The next step is the transition from Cartesian
coordinates to spherical coordinates, where a point
is represented as a tuple (ρ, φ, θ), where: ρ is the
radius; φ is the angle between the positive x-axis
and the projection of the segment drawn from the
pole to the point Of onto the XY plane; θ is the
angle between the positive z-axis and the segment
drawn from the pole to the point P. To perform this
transition, the following formulas are applied:

 O

x y z

x y

z

atan y x

f

f f f

f f

f

f f

� � �

�

�

�

, , arctan

,

� �� � �

� � �

�
�

� � �

�

�

2 2 2

2 2

2

��
��

�

�
�
�

, (6)

where atan2 is a special function for determin-
ing the angle θ (a standard function in many pro-
gramming languages; the details of its operation
will not be discussed in this work).

The next step is to determine the values of r and
k for the surface f. To do this, we take the angular

values of the spherical coordinate of the center of
mass Of of the surface, as these values are uni-
form in value and form a sphere (i.e., a globe) that
can be conventionally unfolded and represented
as a two-dimensional matrix, and the radius ρ
has a depth value (or in terms of the RGBA col-
our scheme – transparency). Therefore, the radius
value will be added as another attribute to the for-
mula (2). Thus, we obtain the following expression
for the model of a single surface:

 f a b c d a b c I dr k r k, ,
, , , : , , ; ,� � � � �� �

� �
�

� �
 (7)

where d – is a fourth value that is equivalent to
the radius value.

Thus, we have obtained a method for repre-
senting the surface of a three-dimensional object
as a two-dimensional image with four-component
pixel tuples.

It only remains to determine the order of ver-
tices a, b, c in the tuple of the surface f. For a
clearly deterministic determination, we will apply
the method of numbering vertices by the distance
between the centre of mass point and the vertex,
in increasing order of this value. The neural net-
work can potentially generate any order of these
vertices, but this is not a problem for the reverse
transformation into a mesh. To implement this
method, we will apply the classic formula for the
distance between points:

op x x y y z zj j f j f j f� �� � � �� � � �� �2 2 2
, (8)

where j ∈ {1,2,3} – is the sequence number of
the vertex.

Next step requires jsut sort the obtained values
in ascending order and number the resulting array.
The vertices corresponding to these distances will
be applied to order the values a, b, c for the for-
mula (7). There is no sense in providing a mathe-
matical description of these simple operations, as
they are purely algorithmic operations that can be
easily implemented in any programming language,
and they are not related to the analytical descrip-
tion of the proposed representation model.

Thus, we have obtained a complete mathemat-
ical description of the proposed model. The sche-
matic representation of the bidirectional converter of
PolyImage representations will be presented next.

Program Implementation Description
For greater clarity in understanding the opera-

tion of the developed PolyImage converter (also
known as MeshImage), a diagram is provided, as
shown in fig. 1.

The role of the triangle distance ρ from the cen-
tre is not depicted in this diagram, as described
in the previous section. In fact, this parameter is

69

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

not used in the training dataset since it has no real
impact on the generated data. Only for the visual
representation of the converter's results as an
image can this parameter be enabled.

As mentioned earlier, to implement the math-
ematical model of the PolyImage converter, the
Java 17 programming language was used. The
converter is a console application with two func-
tions (the functionality can be easily extended as
the code follows SOLID principles):

1. Generating a training dataset based on a
single instance of a three-dimensional object:
This object, which needs to be trained, should be
in.usda format. The result will be a set of.bson files,
which are compressed representations of PixelIm-
age (as shown in diagram 1). These files do not
store zero pixels and will be filled automatically by
the Julia algorithm (described below).

2. Reverse conversion from a set of.bson files
to.usda files of three-dimensional objects: This
function is needed to verify the generated objects
since the model generates only PixelImage rep-
resentations.

Finally, a class diagram (abbreviated) of this
converter is presented in Fig. 2.

It’s cleary can be seen that some classes par-
ticipate in interpreting the USD format, and some
in converting UsdFile to PixelImage, and another
part performs the function of generating instances
for the training dataset. The algorithm for generat-
ing instances is based on the operation of rotating
points in three-dimensional space around the unit
vectors x, y, z (the mathematical component of this
operation will not be described in detail as these
are well-known linear operations).

Next, let's present a class call diagram, which
will provide additional insight into the mechanism.
This diagram is shown in Fig. 3.

It seems there was an issue, and the code snip-
pet or further description about the bidirectional
conversion from the compressed representation
PixelImage to numerical tensors used in the Poly-
ImageGen model training algorithm is missing.
Here is the relevant code snippet:

function parse_meshImg(bson::Dict)
 filledPixels = [bson[:pixels][i] for i

in 1:size(bson[:pixels], 1)]
 meshImg = zeros(Float32, bson[:width],

bson[:height], 3)
 for pixel in filledPixels
 meshImg[pixel[:x]+1, pixel[:y]+1, 1]

= pixel[:a]
 meshImg[pixel[:x]+1, pixel[:y]+1, 2]

= pixel[:b]
 meshImg[pixel[:x]+1, pixel[:y]+1, 3]

= pixel[:c]
 end
 return meshImg
end
function serialize_img(img)
 pixels = vec([Dict(:a=>Float64(

img[x,y,1]), :b=>Float64(img[x,y,2]),
:c=>Float64(img[x,y,3])) for x in
1:size(img,1), y in 1:size(img,2)])

 pixels = filter(x -> x[:a]!=0 ||
x[:b]!=0 || x[:c]!=0 , pixels)

 return Dict(:pixels => pixels, :width
=> size(img,1), :height => size(img,2))

end
for i in 1:size(a,4)
 s_img = serialize_img(a[:, :, :, i])
 BSON.bson("bsons/" * string(i) *

".bson", s_img)
End

Fig. 1. PolyImage converter scheme

70

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

Fig. 2. Converter classes diagram

Fig. 3. Converter call diagram

71

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

As we can see, operations with vectors,
matrices, and tensors are quite easily and con-
cisely implemented in the Julia programming
language.

Further, in Fig. 4, the schema of the DCGAN
model used for testing PolyImage is presented.
The diagram also illustrates the logical connection
between the discriminator and the generator, as
well as a set of training instances.

The diagram includes several additional ele-
ments necessary to improve the training process
of the standard GAN model, including BatchNorm
(to strengthen the generator) and Dropout (to slow
down the discriminator). The ADAM optimization
method with different combinations of learning
rates was used to optimize the backpropagation
algorithm. Most implementations of these methods

rely on the Flux framework for the Julia program-
ming language.

Summary and Conclusion. Conclusions from
this research and prospects for further exploration
in this direction. The scientific novelty lies in pro-
posing a new type of representation for a three-di-
mensional object that can be used for training typ-
ical generative models.

The proposed method of representing a
three-dimensional object demonstrated its viabil-
ity even in the context of training a small typical
DCGAN generative model. Perspectives for fur-
ther research into the proposed method for train-
ing other typical generative models were also
identified, as this method can be easily adapted to
representations of input and output data in a wide
range of neural network archite.

Fig. 4. DCGAN Model

BIBLIOGRAPHY:
1. Ian, J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, Yoshua Bengio. Generative Adversarial Nets. Archive of scientific articles arXiv, 9 p. arXiv: 2014.
1406.2661.

2. Description of the working principle of the VAE model. Medium WebSite. URL: https://towardsdatascience.
com/understanding-variational -autoencoders-vaes-f70510919f73.

3. A general description of the existing methods of presenting three-dimensional models. Carlow Institute
of Technology website, Ireland. URL: https://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes /meshes/
polygon_meshes.html.

4. Description of the most popular file formats for 3D objects. SelfCAD project site. URL: https://www.
selfcad.com/blog/8-best-common-3d-file-formats.

5. Official documentation for Universal Scene Description. URL: https://openusd.org/release/index.html.
6. Jiajun, Wu, Chengkai, Zhang, Tianfan, Xue, William, T. Freeman, Joshua B. Tenenbaum. Learning a

Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. Archive of scientific
articles arXiv, 2017. 11 p. arXiv: 1610.07584.

7. Charlie, Nash. The shape variational autoencoder: A deep generative model of part-segmented 3D
objects. Charlie Nash, C. K. I. Williams. – GitHub website of article author Charlie Nash, 2017. 11 p. URL:
http://charlienash.github.io /assets/docs /sgp2017.pdf.

72

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 1, 2024

8. AtlasNet: A Papier-Mache Approach to Learning 3D Surface Generation. Thibault Groueix, Matthew
Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry. – Archive of scientific articles arXiv, 2018. – 16 p.
arXiv: 1802.05384.

9. Matheus Gadelha. Multiresolution Tree Networks for 3D Point Cloud Processing. / Matheus Gadelha, Rui
Wang, Subhransu Maji. – Archive of scientific articles arXiv, 2018. – 17 p. arXiv: 1807.03520.

10. PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows. Guandao Yang, Xun Huang,
Zekun Hao, Ming-Yu Liu, Serge Belongie, Bharath Hariharan. – Archive of scientific articles arXiv, 2019. – 15 p.
arXiv: 1906.12320.

11. Learning Representations and Generative Models for 3D Point Clouds. Panos Achlioptas, Olga Diamanti,
Ioannis Mitliagkas, Leonidas Guibas. – Archive of scientific articles arXiv, 2018. – 18 p. arXiv: 1707.02392.

12. PolyGen: An Autoregressive Generative Model of 3D Meshes. Charlie Nash, Yaroslav Ganin, S. M. Ali
Eslami, Peter W. Battaglia. – Archive of scientific articles arXiv, 2020. – 16 p. arXiv: 2002.10880.

13. Occupancy Networks: Learning 3D Reconstruction in Function Space. Lars Mescheder, Michael
Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger. – Archive of scientific articles arXiv, 2019. –
11 p. arXiv: 1812.03828.

14. Comparison of different configurations of the GAN model based on the AWS cloud computing service.
Information Technology: Computer Science, Software Engineering and Cyber Security. B. Moroz., L. Kabak,
K. Rodna, E. Ruksov, 2, 2022. p. 61–78. https://doi.org/10.32782/IT/2022-2-7.

REFERENCES:
1. Ian, J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, Yoshua Bengio. (2014). Generative Adversarial Nets. Archive of scientific articles arXiv, 9 p. arXiv:
1406.2661.

2. Description of the working principle of the VAE model. Medium WebSite. Retrieved from: https://
towardsdatascience.com/understanding-variational -autoencoders-vaes-f70510919f73.

3. A general description of the existing methods of presenting three-dimensional models. Carlow
Institute of Technology website, Ireland. Retrieved from: https://glasnost.itcarlow.ie/~powerk/
GeneralGraphicsNotes /meshes/polygon_meshes.html.

4. Description of the most popular file formats for 3D objects. SelfCAD project site. Retrieved from: https://
www.selfcad.com/blog/8-best-common-3d-file-formats.

5. Official documentation for Universal Scene Description. Retrieved from: https://openusd.org/release/
index.html.

6. Jiajun, Wu, Chengkai, Zhang, Tianfan, Xue, William, T. Freeman, Joshua B. Tenenbaum. (2017). Learning
a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. Archive of scientific
articles arXiv, 11 p. arXiv: 1610.07584.

7. Charlie, Nash. (2017). The shape variational autoencoder: A deep generative model of part-segmented
3D objects. / Charlie Nash, C. K. I. Williams. – GitHub website of article author Charlie Nash, – 11 p. Retrieved
from: http://charlienash.github.io /assets/docs /sgp2017.pdf.

8. Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry. (2018). AtlasNet: A
Papier-Mache Approach to Learning 3D Surface Generation. – Archive of scientific articles arXiv, 16 p. arXiv:
1802.05384.

9. Matheus Gadelha, Rui Wang, Subhransu Maji. (2018). Matheus Gadelha. Multiresolution Tree Networks
for 3D Point Cloud Processing. Archive of scientific articles arXiv, 17 p. arXiv: 1807.03520.

10. Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, Bharath Hariharan. (2019).
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows. Archive of scientific articles arXiv, –
15 p. arXiv: 1906.12320.

11. Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, Leonidas Guibas. (2018). Learning Representations
and Generative Models for 3D Point Clouds. Archive of scientific articles arXiv, 18 p. arXiv: 1707.02392.

12. Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, Peter W. Battaglia. (2020). PolyGen: An Autoregressive
Generative Model of 3D Meshes. Archive of scientific articles arXiv,16 p. arXiv: 2002.10880.

13. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger. (2019).
Occupancy Networks: Learning 3D Reconstruction in Function Space. / – Archive of scientific articles arXiv,
11 p. arXiv: 1812.03828.

14. Moroz, B., Kabak, L., Rodna, K. & Ruksov, E. (2022). Comparison of different configurations of the
GAN model based on the AWS cloud computing service. Information Technology: Computer Science, Software
Engineering and Cyber Security, 2 p. 61–78. https://doi.org/10.32782/IT/2022-2-7.

