Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 2, 2024

UDC 004.932:528.854
DOI https://doi.org/10.32782/1T/2024-2-12

Leonid MESHCHERIAKOV

Doctor of Engineering, Professor, Department of Software Engineering, Dnipro University of Technology, 19,
Dmytra Yavornytskoho ave., Dnipro, Ukraine, 49005, meshcheriakov.l.i@ nmu.one

ORCID: 0000-0002-9579-19701970

Scopus-Author ID: 57205282540

Volodymyr KUVAIEV

Doctor of Technical Sciences, Professor at the Department of Software Engineering, Dnipro University of
Technology, 19, Dmytro Yavornytskyi ave., Dnipro, Ukraine, 49005, kuvaiev.v.m@nmu.one

ORCID: 0000-0001-6329-071X

Scopus Author ID: 6602411915

Alona KHAR

Assistant Lecturer at the Department of Software Engineering, Dnipro University of Technology, 19, Dmytro
Yavornytskyi ave., Dnipro, Ukraine, 49005, khar.a.t@nmu.one

ORCID: 0000-0003-3176-7792

Sergey DEMENKOV
Master of the Department of Computer System’s Software, Dnipro University of Technology, 19, Dmytra
Yavornytskoho ave., Dnipro, Ukraine, 49005, demenkov.s.o@nmu.one

To cite this article: Meshcheriakov, L., Kuvaiey, V., Khar, A., Demenkoyv, S. (2024). Avtomatychna
heneratsiia kodu dlia ORM-systemy ActiveJDBC na bazi tekhnolohii annotation processin [Automatic
code generation for ORM-system ActiveJDBC based on annotation processing technology]. Information
Technology: Computer Science, Software Engineering and Cyber Security, 2, 97-102, doi: https://
doi.org/10.32782/1T/2024-2-12

AUTOMATIC CODE GENERATION FOR ORM-SYSTEM ACTIVEJDBC
BASED ON ANNOTATION PROCESSING TECHNOLOGY

The promising development of the software development field has led to the emergence of various templates
and strategies for manipulating databases and, accordingly, the tools that implement them. One of the design patterns
that is gaining more and more popularity is Active Record. This template allows encapsulating all the logic of working
with the database table in the model class itself, which eliminates the need to create additional service classes that
will be responsible for CRUD operations. One of the implementations of this approach is the ActiveJDBC ORM
system. ActiveJDBC is developed as open source software and is a popular choice for developing Java applications
that interact with relational databases.

The aim of the work is to present the process of improving the user experience when working with the ActiveJDBC
ORM system. The improvement is achieved through automatic code generation, which allows manipulating
ActiveJDBC objects as POJOs.

The methodology for solving the task consists in the development of an annotation processor, which allows
automatically code generating at the compilation stage that will interact with the ORM objects of the ActiveJDBC system.

The scientific novelty of the obtained results lies in the fact that for the first time software was developed
that facilitates interaction with ActiveJDBC components and allows adding functionality that was not included in
ActiveJDBC by its developer.

Conclusions. Approaches to the generation of program code in the Java programming language have been
studied, and an annotation handler has been developed, which allows automatically at the compilation stage to
generate code that will interact with ORM objects of the ActiveJDBC system. The developed tool allows: to free
the programmer’s working time from writing template code, and to focus on solving the tasks, and not on maintaining
the database interaction tool; reduce the amount of code that must undergo validation during the Code Review
process; increase the readability of the received code, thanks to the use of getters and setters, the names of which
correspond to the JavaBeans specification, and the use of the Builder pattern.

Key words: ActiveJDBC, ORM, code generation, Java, Dynamic Proxy, Annotation Processor, database
manipulation strategies.

97



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 2, 2024

JleoHid MELLJEPSIKOB

00KMOp MeXxHIYHUX Hayk, npogecop kKaghedpu mnpospamHo20 3abesreqeHHs KOMITIOMEPHUX CcuCmeM,
HauioHanbHutl mexnivHul yHisepcumem «/[JHinposcbka ronimexHikay, npocn. Amumpa SeopHuybkozo, 19,
M. [JHinpo, YkpaiHa, 49005

ORCID: 0000-0002-9579-1970

Scopus-Author ID: 57205282540

Bosnodumup KYBAEB

00KMOp MeXxHIYHUX Hayk, npogecop kKaghedpu mnpospamHo20 3abesrneqeHHs KOMITIOMEPHUX CcuCmeM,
HauioHanbHul mexnivHul yHisepcumem «/Hinposcbka ronimexHikay, npocn. Amumpa SeopHuybkozo, 19,
M. [JHinpo, YkpaiHa, 49005

ORCID: 0000-0001-6329-071X

Scopus Author ID: 6602411915

AnboHa XAPb

acucmeHm kKagedpu rnpospamHo20 3abesnedeHHs KOMITIomepHUX cucmem, HauyioHanbHUl mexHiYHul
yHieepcumem «/JHinposcbka nonimexHikay, npocn. mumpa SleopHuubkozo, 19, m. [JHinpo, YkpaiHa, 49005
ORCID: 0000-0003-3176-7792

Cepeitt JEMEHKOB
mazicmp Kaghedpu npospamMHO20 3abesrneqeHHsT KOMMIMEPHUX cucmeM, HauioHanbHUU mexHidHUl
yHieepcumem «/JHinposcbka nonimexHikay, npocn. mumpa SleopHuubkoezo, 19, m. [JHinpo, YkpaiHa, 49005

Biobniorpachiunnm onuc crarrti: Mewepskos, J1., Kysaes, B., Xapb, A., [lemeHkos, C. (2024).
ABTOMaTmM4Ha reHepauis kogy ona ORM-cuctemu ActiveJDBC Ha 6asi TexHonorii Annotation Processor.
Information Technology: Computer Science, Software Engineering and Cyber Security, 2, 97-102, doi:
https://doi.org/10.32782/1T/2024-2-12

ABTOMATUYHA rEHEPALIA KOAY ANA ORM-CUCTEMU ACTIVEJDBC
HA BA3I TEXHOJOr T ANOTATION PROCESSING

lMepcriekmugHuUl po38uMOoK earsly3i po3pobKu npospamHo20 3abesreqeHHs rpu3esie 00 Mos8U Pi3HOMAaHIMHUX
wabrsoHie ma cmpameeili MaHinynayit 3 6azamu daHux ma, 8idrnosioOHO iHcmpymeHmig, wo ix peanizyromes. OOHUM
3 wabrioHie NnpoekmysaHHs1, uio Habysae ece binbLwoi nonynspHocmi € Active Record. Llel wabnoH o360risie iHKar-
cynmosamu 8cro n102iky pobomu 3 mabnuyeto 6azu aHux y cam Krac molersi, 3a80siKU YOMY 3HUKaE HEOBXIOHICMb
cmeoprosamu 0oGamkosi cepsicHi knacu, ski 6ydymsb sidrnosidamu 3a CRUD onepaujii. O0Hieto 3 peanisauiti 4b020
nioxody € ORM-cucmema ActiveJDBC. ActiveJDBC po3susaembcs sk 8i0Kpume rpozpamHe 3abe3rneqeHHs i € norny-
JISIPHUM 8apiaHmom 0511 po3pobku dodamkie Ha Java, siKi e3aemolitome 3 pensuitiHumu 6azamu aHux.

Memotro po6omu e npedcmasneHHsI NPoUecy rnokKpaweHHs kopucmyeaubko2o doceidy npu pobomi 3 ORM-
cucmemoro ActiveJDBC. lNokpauwieHHs docmsieaembCsi 3a paxyHOK asmomMamuyHoi eeHepauii kody, ujo 003eossie
maninymrosamu 3 ActiveJDBC o6’ekmamu sik 3 POJO.

Memodosnozisi piwieHHs1 NpedcmasneHo20 3a80aHHsI cknadaembscsi 8 pPo3pobrieHHi 06pobHUKa aHomauit, uwo
0o3eos1sie asmomMamuy4HO Ha emani Komninauii 3eeHepysamu kod, wo byde s3aemodismu 3 06’ekmamu ORM cuc-
memu ActiveJDBC.

Haykoea HOgU3Ha ompuMaHux pe3ynbmamie fomnseac y momy, wo enepwe byno po3pobrieHo rnpospamHe
3abesneqeHHs, sike noneawye e3aemolito 3 ActiveJDBC komnoHeHmamu, ma 0038os1s€ do0asamu byHKYioHar,
AKkul He 6ye 3aknadeHul y ActiveJDBC lio2o po3pobHUKOM.

BucHoeku. [ocnidxeHi nidxodu eeHepauii npoepamHo2o Kody y Mosi npozspamysaHHsi Java ma po3pobrieHo
06pobHUK aHomauil, w0 00360/19€ asmoMamu4YHO Ha emarl KOMninsauii 3zeHepysamu ko0, sikuli byde 83aemoli-
amu 3 o6’ekmamu ORM cucmemu ActiveJDBC. PospobneHuli iHcmpymeHm 0038071sie; 8UsifibHUMu poboyull Yac
npoepamicma 8id HarnucaHHs1 wabrioHHO20 K0dy, ma 30cepedumuch Ha BUPIWEHHI MocmasneHux 3adad, a He Ha
obcnyeo8y8aHHi iHCcmpymeHma e3aemo0ii 3 6a3or0 daHux; 3meHwuUmu obcse kody, Wo nosuHeH npolmu eanidaujio
npu npoxodxeHHi npoyecy Code Review; nidsuwumu yumabensHicms ompumaHo2o Kody, 3ag0sKu 8UKOpUCmaH-
HIO 2emmepie ma cemmepis, Ha3su sKUX eidnosidarome crieyudbikauii JavaBeans, ma sukopucmaHHsaM namepHa
bydisernbHUK.

Knrouoei cnoea: ActiveJDBC, ORM, eeHepauisi kody, Java, Dynamic Proxy, Annotation Processor, cmpameaiti
MaHinynsauit 3 basamu daHuUX.

98



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 2, 2024

The urgency of the problem. Undoubtedly,
the success and growth of any IT project depends
on many factors that can be considered at different
levels: from strategic to operational. Accordingly,
at the strategic level, the success of the project
depends on how well it is aligned with the goals
and needs of the organization that orders or imple-
ments it. On the operative level, it depends on
how its main processes are performed: planning,
organization, control and closure, as well as how
correctly the main tools were chosen and how con-
venient it is to use them to achieve the operational
and strategic success of the project.

It often happens that due to a not entirely suc-
cessful decision when choosing a tool, software
development requires writing a large amount of
boilerplate code. This leads to the fact that the
programmer spends a large part of his work-
ing time on maintaining the tool itself, which is
used to solve the given task, and not on solving
the task itself, which in turn leads to such conse-
quences as: the company’s funds are spent not
on solving the set tasks, and to write templated,
often repeated code; the likelihood of errors, bugs,
and vulnerabilities increases, because template
code may contain redundant, outdated, or incor-
rect parts that may cause conflicts, incompatibili-
ties, or unsafe behavior; the size and complexity
of the code base increases, as boilerplate code
can take up a lot of space and resources, which
can degrade software performance, speed, and
reliability, and make such code significantly more
difficult to read. And precisely because of this, in
order to prevent the appearance of template code,
tools are often used, the purpose of which, even
at the project compilation stage, or already during
the execution of the software code, is to generate
code that the programmer would otherwise have
to write himself. One example of a tool, the use
of which can lead to the appearance of template
code, is the ActiveJDBC ORM system, which is
quite widespread due to its availability.

Analysis of recent research and publica-
tions. The existing development of the field of soft-
ware development has led to the appearance of
various templates and strategies for manipulating
databases and, accordingly, tools that implement
them. One of the design patterns that is gaining
more and more popularity is Active Record. This
template allows you to encapsulate all the logic
of working with the database table in the model
class itself, which eliminates the need to create
additional service classes that will be responsible
for CRUD operations. One of the implementations
of this approach is the ActiveJDBC ORM system.
ActiveJDBC is developed as open source software

99

and is a popular choice for developing Java appli-
cations that interact with relational databases.

According to documentation (javalite.io) [1],
the main principles of ActiveJDBC are as follows:
extracting metadata from the database; configu-
ration is based on agreements; no need to learn
another query language. SQL will suffice; the
code often reads like English text; no sessions, no
attachment to sessions, no reattachment to ses-
sions; no save managers; models are lightweight,
simple POJOs; no Proxy. What is written is what is
received; there are no getters and setters, but you
can write them if necessary; no DAO and DTO;
there is no anemic domain model.

Although ActiveJDBC declares that model
classes must be POJOs, they are too lightweight,
that is not a problem when using this tool in small
projects, but as the codebase grows, it leads to a
lot of boilerplate code. For example, if there is a
need to access the attributes of a relation tuple,
ActiveJDBC suggests using the «get» and «set»
methods, and passing the name of the attribute
itself to them, that can lead to programmer errors
due to inattention and greatly complicates writing
code, especially when in the project, which uses
ActiveJDBC as an ORM uses data types not sup-
ported by ActiveJDBC. Examples of such types
are java.time.LocalDate and java.time.LocalDate-
Time, which were added back in Java 8. One
workaround is to use custom methods that will be
added to ActiveJDBC that will do all the necessary
conversions.

The next feature is that the base abstract class
for ActiveJDBC Model objects does not implement
the equals() and hashCode() methods, which
makes it impossible to compare two ActiveJDBC
objects with each other, and also makes it impos-
sible to use such objects objects as keys for hash
collections. Therefore, if they are needed, then
again, users are forced to write them themselves.

Another potential limitation is that the toString()
method is also not overridden, that can sometimes
be inconvenient, for example, when outputing
some information to the log is needed.

Also, it should be noted that another disadvan-
tage of this tool is the inability to use the Builder
spawning pattern to create new objects. There-
fore, the development of a tool that will automat-
ically generate template code for the ActiveJDBC
ORM system remains relevant.

The purpose of the article is to present the
process of improving the user experience when
working with the ActiveJDBC ORM system. The
improvement is achieved through automatic code
generation, that allows manipulating ActiveJDBC
objects as POJOs.



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 2, 2024

Presenting main material. Since the devel-
oped tool must be able to generate the code
required by the user, first, it is necessary to find
out how it is possible to achieve this goal in the
Java programming language. Currently, there are
several stages during which Java allows interven-
ing in the program code and do something addi-
tional with it that was not explicitly specified by the
programmer. They can be conventionally divided
into: code generation during the execution of the
program code, and code generation at the stage of
compilation of the program code [2].

Runtime code generation is quite common and
is used in many different frameworks and libraries.
As an example of such a framework, the Spring
Framework can be cited. According to a study con-
ducted by B. Vermer (snyk.io) [3], who conducted
a survey of more than two thousand respondents,
Spring is used by 60% of them.

Code generation during execution can be con-
ventionally divided into:

— code generation during class loading;

— code generation when calling the correspond-
ing generator methods.

Both approaches use the ClasslLoader as the
main tool.

Compile-time code generation can be per-
formed thanks to Maven plugins, but the annota-
tion processing approach is usually used as the
most versatile and independent means of auto-
mating work with Apache Maven software projects.

The annotation processor (Annotation Proces-
sor) is a tool in the Java development environment
that allows developers to create their own annota-
tions and define the logic associated with them. It
plays an important role in modern Java develop-
ment, allowing to automate many routine tasks and
provide additional functionality for written code.

There is a loop followed by the javac compiler that
allows each annotation handler to generate code for
the annotations that are open to it. Here is the hierar-
chical order of this process (medium.com) [4]:

1. An element is marked with an annotation that
is open to the annotation handler.

2. javac starts compiling the project classes. It
is already aware of all existing annotation proces-
sors because it includes them in the classpath.

3. javac creates files with the extension «.class»
during the first pass of processing. Since javac has
already processed files with the «.java» extension,
it already knows about the annotations that have
been used. It then passes control to the appropri-
ate annotation processor.

4. At this step, the annotation processor begins
its work. Here it can generate additional files with
the extension «.java» or do any other work.

100

5. At this point, all the initial «.java» files have
been compiled, but the newly generated «.java»
files have not yet been processed. However, javac
will detect this and start another round of process-
ing from the first step.

A schematic representation of the work of the
annotation processor is presented in Fig. 1.

Annotation handlers are used in many pop-
ular frameworks and libraries such as Lom-
bok, MapStruct and many others. They help
to make the code more efficient, make fewer
mistakes and allow you to create part of the
functionality even at the compilation stage of
the project.

It is relatively easy to start working with anno-
tations. In order to create annotation processor, it
is enough to implement the Processor interface or
extend the AbstractProcessor class from the javax.
annotation.processing package. An example of the
code is shown in Fig. 2.

Theresults ofthe analysis of existing approaches
to code generation are shown in Table 1.

Based on the data from the above table, it is
concluded that to achieve the goal, the most opti-
mal solution will be to use the annotation process-
ing approach.

After the generation of wrapper classes for
ActiveJDBC models, the following results were
obtained depending on the number of lines of code
that must be written without and with the use of a
template code generator. The results are shown in
Table 2.

Conclusions. Thus, approaches to the gen-
eration of program code in the Java program-
ming language were investigated. An annotation
handler was developed, which allows automat-
ically generating code at the compilation stage
that will interact with ORM objects of the Active-
JDBC system.

The developed tool allows to free the pro-
grammer’s work time from writing template rou-
tine code, and to focus on solving the tasks set
before him, instead of maintaining the database
interaction tool; to reduce the amount of code
that must undergo validation during the Code
Review process; to increase the readability of
the resulting code, thanks to the use of getters
and setters whose names correspond to the Jav-
aBeans specification, and the possibility of using
the Builder pattern; to increase the stability of
the received code due to the fact that the tool
will automatically perform all necessary checks
and transformations of data that will be received
from the database or, conversely, stored in it; to
prevent premature use of ActiveJDBC objects by
using the Builder pattern.



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 2, 2024

Processing rounds

@ExampleAnnotation
public class SomeClass {
/l some code here

7

ExampleProcessor javac AnotherProcessor

L

SomeClass.class }
public class
., [GeneratedClass {
oulput I/ some code there
GeneratedClass.class )

Fig. 1. Schematic representation of the work of the annotation processor

public class TestProcessor extends AbstractProcessor {

@override

public boolean process(
Set<? extends TypeElement> annotations,
RoundEnvironment roundEnv) {

for (TypeElement annotation : annotations) {
Set<? extends Element> elementsAnnotatedWith = roundEnv
.getElementsAnnotatedWith(annotation);
for (Element element : elementsAnnotatedWith) {
processingEnv.getMessager()
.printMessage(Diagnostic.Kind.NOTE, msg: "AHOTauiw 3Haifpoexo!"):

I

return false;

Fig. 2. An example of an annotation handler

101



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 2, 2024

Table 1
Table of comparative characteristics of code generation methods
Characteristic Code generation from runtime Compile-time code generation
e o socmonal o2 o e No
e e ™ No
Allows overriding the equals() method Yes Yes
ﬂ‘lﬁpvgdovemdmg the hashCode() Yes Yes
Allows overriding the toString() method Yes Yes
Allows generating new methods Yes, but this code cannot be used by a Yes
programmer when writing new code
Allows generating builder classes Yes, but this code cannot be used by a Yes
programmer when writing new code
Table 2
Table of the dependence of the code terms number on the number of expected table attributes
Number of table Wltr::%léteu;ézgraa&(:"aer:gIate bo Without using a The number of code
attributes without the need for data oilerplate code generator | terms obtained using the
transformation and with data conversion | boilerplate code generator
1 59 63 12
2 74 82 13
3 89 101 14
4 104 120 15
5 119 139 16
6 134 158 17
7 149 177 18
8 164 196 19
9 179 215 20
10 194 234 21

BIBLIOGRAPHY:

1. ActiveJDBC. URL: https://javalite.io/activejdbc (gata 3BepHeHHs: 28.10.2023).

2. JavaBeans(TM) Specification 1.01 Final Release. URL: https://download.oracle.com/otndocs/jcp/7224-
javabeans-1.01-fr-spec-oth-JSpec/ (aata 3BepHeHHs: 28.10.2023).

3. Spring dominates the Java ecosystem with 60% using it for their main applications. URL: https://snyk.
io/blog/spring-dominates-the-java-ecosystem- with-60-using-it-for-their-main-applications/ (aata 3BepHeHHs:
28.10.2023).

4. All About Annotations and Annotation Processors. URL.: https://medium.com/swlh/all-about-annotations-
and-annotation-processors-4af47159f29d (narta 3sepHeHHs: 28.10.2023).

REFERENCES:

1. ActiveJDBC. (n.d.). javalite.io. Retrieved from: https://javalite.io/activejdbc.

2. JavaBeans (TM) Specification 1.01 Final Release. (n.d.). download.oracle.com. Retrieved from: https://
download.oracle.com/otndocsl/jcp/ 7224-javabeans-1.01-fr-spec-oth-JSpec/

3. Spring dominates the Java ecosystem with 60% using it for their main applications. (n.d.). snyk.io.
Retrieved from: https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-using-it-for-their-main-
applications/

4. All About Annotations and Annotation Processors. (n.d.). medium.com. Retrieved from: https://medium.
com/swlh/all-about-annotations-and-annotation-processors-4af47159f29d

102



