
103

Information Technology: Computer Science, Software Engineering and Cyber Security, Вип. 2, 2024

UDC 519.85
DOI https://doi.org/10.32782/IT/2024-2-13

Denys OLIANIN
Master of Faculty of Cybernetics and Computer Sciences, Taras Shevchenko National University of Kyiv, 60, 
Volodymyrska Str., Kyiv, Ukraine, 01601, denys.olianin@knu.ua
ORCID: 0009-0002-5266-3941

To cite this article: Olianin, D. (2024). Optymizatsiia funktsii lohistychnykh vytrat na transportuvannia 
[Logistics transportation cost function optimization]. Information Technology: Computer Science, Software 
Engineering and Cyber Security, 2, 103–109, doi: https://doi.org/10.32782/IT/2024-2-13 

LOGISTICS TRANSPORTATION COST FUNCTION OPTIMIZATION

Purpose of the study. Optimizing transportation costs is a fundamental challenge in logistics management 
that requires advanced techniques to handle the complexities of geographical distances, transportation modes, 
and operational constraints. This article investigates the use of RMSProp, RMSProp with gradient clipping, 
and Proximal Gradient Descent methods in the optimization of transportation cost functions within logistics networks. 
By incorporating quality functions associated with both origin and delivery points, the study seeks to achieve 
a balance between cost reduction and the enhancement of service quality.

Methodology. We present a comparative analysis of the performance of these methods, focusing on their 
efficiency in terms of convergence rates and the quality of the solutions obtained. The research demonstrates that 
RMSProp and its variant with gradient clipping are particularly effective in navigating the solution space, offering fast 
convergence and high-quality solutions. Proximal Gradient Descent, on the other hand, shows promise in handling 
the discrete nature of logistics problems.

Scientific novelty. This study underscores the critical role of transportation cost optimization amidst the growing 
demands of global trade and logistics. As global trade expands, the need to minimize transportation expenses 
while maintaining service quality becomes increasingly vital. Advanced optimization techniques like RMSProp 
and Proximal Gradient Descent can lead to significant cost savings and improved operational efficiency, benefiting 
businesses involved in international trade.

Conclusions. In conclusion, this study highlights the effectiveness of RMSProp and Proximal Gradient Descent 
in optimizing transportation costs. It emphasizes the necessity of continuous innovation in logistics management to 
meet the evolving demands of global trade. Future research directions include the exploration of hybrid optimization 
techniques that combine the strengths of gradient-based methods, further enhancing the robustness and applicability 
of transportation cost optimization models in diverse logistical environments.

Key words: transportation cost optimization, Gradient descent methods, Logistics management, Evaluating 
functions, RMSProp, Proximal gradient descent.
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ОПТИМІЗАЦІЯ ФУНКЦІЇ ЛОГІСТИЧНИХ ВИТРАТ НА ТРАНСПОРТУВАННЯ

Мета роботи. Оптимізація транспортних витрат є фундаментальною проблемою в управлінні логіс-
тикою, яка потребує використання передових методів для вирішення складнощів, пов’язаних з географіч-
ними відстанями, видами транспорту та операційними обмеженнями. У цій статті досліджується вико-
ристання методів RMSProp, RMSProp з обрізанням градієнта та Проксимального Градієнтного Спуску 
в оптимізації функцій транспортних витрат у логістичних мережах. Включаючи функції якості, пов’язані 
як з початковими, так і з кінцевими точками доставки, дослідження прагне досягти балансу між знижен-
ням витрат та покращенням якості обслуговування.

Методологія. Представлено порівняльний аналіз ефективності цих методів, зосереджуючись на їх 
ефективності з точки зору швидкості збіжності та якості отриманих рішень. Дослідження демонструє, 
що RMSProp та його варіант з обрізанням градієнта є особливо ефективними у навігації в просторі 
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рішень, забезпечуючи швидку збіжність та високоякісні рішення. З іншого боку, Проксимальний Градієнт-
ний Спуск показує перспективи у вирішенні дискретних проблем логістики.

Наукова новизна. Це дослідження підкреслює важливу роль оптимізації транспортних витрат у кон-
тексті зростаючих вимог глобальної торгівлі та логістики. З розширенням глобальної торгівлі необхід-
ність зниження транспортних витрат, зберігаючи при цьому якість обслуговування, стає дедалі важ-
ливішою. Передові методи оптимізації, такі як RMSProp та Проксимальний Градієнтний Спуск, можуть 
призвести до значної економії витрат та покращення операційної ефективності, що приносить користь 
бізнесу, який займається міжнародною торгівлею.

Висновки. У висновку, це дослідження підкреслює ефективність RMSProp та Проксимального Граді-
єнтного Спуску в оптимізації транспортних витрат. Воно наголошує на необхідності постійних іннова-
цій в управлінні логістикою для задоволення еволюційних вимог глобальної торгівлі. Напрями майбутніх 
досліджень включають вивчення гібридних методів оптимізації, які поєднують сильні сторони методів, 
заснованих на градієнтах, ще більше підвищуючи надійність та застосовність моделей оптимізації тран-
спортних витрат у різноманітних логістичних середовищах.

Ключові слова: оптимізація транспортних витрат, Методи градієнтного спуску, Управління логісти-
кою, Оцінювальні функції, RMSProp, Проксимальний градієнтний спуск.

Introduction. Optimizing transportation costs 
is a critical challenge in logistics management, 
essential for maintaining competitiveness and 
profitability in the global market. As businesses 
extend their operations across borders, they face 
complex factors such as geographical distances, 
diverse transportation modes, and various oper-
ational constraints. Traditional methods often fall 
short in addressing these complexities, highlight-
ing the need for advanced optimization techniques.

Recent advancements in machine learning and 
optimization have introduced powerful algorithms 
capable of tackling these challenges effectively. 
This article explores the application of modern 
optimization algorithms–specifically RMSProp, 
RMSProp with gradient clipping, and Proximal 
Gradient Descent–in the context of transportation 
cost optimization within logistics networks. These 
methods, grounded in optimization theory and 
machine learning, offer efficient solutions by navi-
gating the solution space to find cost-effective and 
high-quality transportation plans.

A key aspect of our study involves integrating 
quality functions related to both origin and delivery 
points, ensuring that cost reduction does not come 
at the expense of service quality. This balance 
is crucial for achieving optimal performance in 
logistics operations, as demonstrated by existing 
research on the topic (Crainic, Perboli, Rosano. 
2018, p 410-418).

The research presented in this article includes a 
comparative analysis of RMSProp, its variant with 
gradient clipping, and Proximal Gradient Descent. 
We focus on their efficiency in terms of convergence 
rates and the quality of solutions obtained, providing 
valuable insights into their applicability in real-world 
logistics scenarios. Previous studies have shown 
the potential of gradient-based methods in various 
optimization problems (Duchi, Hazan, Singer, 2011, 
p 2121-2159; Kingma, Ba, 2014) which we aim to 
build upon in the context of logistics.

Moreover, this study underscores the impor-
tance of transportation cost optimization amidst 
the growing demands of global trade and logistics. 
With international trade volumes increasing, the 
need to minimize transportation expenses while 
maintaining service quality becomes more critical. 
Advanced optimization techniques like RMSProp 
and Proximal Gradient Descent can lead to signif-
icant cost savings and improved operational effi-
ciency, benefiting businesses involved in global 
trade (Cordeau, Toth, Vigo, 2002, p 380-404; 
Laporte, 2007, p 811-819).

In conclusion, the findings of this research 
emphasize the necessity of continuous innova-
tion in logistics management to meet the evolving 
demands of global commerce. By exploring and 
implementing advanced optimization techniques, 
logistics managers can ensure their operations 
remain both cost-effective and competitive in an 
increasingly complex and dynamic environment. 
This article contributes to the existing body of 
knowledge by demonstrating the practical benefits 
of modern optimization methods in transportation 
cost management, encouraging further research 
and application in this field.

Related works. The optimization of transpor-
tation costs is a well-explored area in logistics and 
operations research, encompassing a variety of 
methodologies and approaches. Traditional meth-
ods often involve linear programming, mixed-in-
teger programming, and heuristic algorithms to 
minimize transportation costs while meeting ser-
vice requirements. In recent years, advanced opti-
mization techniques, particularly those leveraging 
gradient-based methods, have gained traction due 
to their ability to handle complex and high-dimen-
sional problem spaces efficiently.

Gradient descent and its variants have been 
widely used for optimization problems in vari-
ous domains. (Kingma, Ba, 2014) introduced 
Adam, an optimization method that computes 
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adaptive learning rates for each parameter, show-
ing superior performance in training deep neu-
ral networks. Similarly, (Duchi, Hazan, Singer, 
2011, p. 2121-2159) proposed Adagrad, an algo-
rithm that adapts the learning rate based on the 
gradients, which has been effective in sparse data 
settings. Our approach leverages RMSProp and 
its variant with gradient clipping to handle the com-
plexities of transportation cost optimization, pro-
viding a robust solution for point-to-point delivery 
scenarios.

Crainic (Crainic, Perboli, Rosano, 2018,  
p. 408-410) provided a comprehensive overview of 
intermodal freight transportation, highlighting the 
challenges and solutions in optimizing transporta-
tion networks. Their work emphasizes the impor-
tance of cost minimization while maintaining ser-
vice quality. Toth and Vigo (Toth,Vigo 2014, p 463) 
explored vehicle routing problems, presenting vari-
ous optimization models and algorithms tailored for 
transportation cost reduction. Our approach builds 
on these foundational works by introducing a dif-
ferentiable quality function that enables the appli-
cation of gradient-based optimization methods, 
thereby enhancing the efficiency and effectiveness 
of transportation cost management.

The primary advantage of our approach lies in 
the differentiability of the quality function, which 
allows for the application of gradient descent 
methods. This not only ensures faster conver-
gence rates but also provides high-quality solu-
tions. By incorporating both the quality functions 
of the origin and destination, along with the truck 
expenses and distance function, our model offers 
a comprehensive framework for transportation 
cost optimization.

Moreover, the use of RMSProp with gradient 
clipping helps to mitigate issues related to explod-
ing gradients, ensuring stable and reliable opti-
mization processes. Proximal Gradient Descent 
further enhances the model’s capability to handle 
discrete and combinatorial aspects of logistics 
problems, providing a versatile and effective solu-
tion for real-world applications.

Our study contributes to the ongoing research 
in transportation cost optimization by introducing 
a novel approach that combines the strengths of 
gradient-based methods with a well-defined qual-
ity function. This approach not only addresses the 
complexities of point-to-point deliveries but also 
sets the stage for further advancements in the 
field, encouraging the exploration of hybrid opti-
mization techniques that integrate gradient-based 
methods with heuristics and metaheuristics.

Methods of optimization. To address the 
complexities involved in optimizing transportation 

costs for point-to-point deliveries, we employ a set 
of advanced optimization algorithms. These algo-
rithms are chosen for their robustness, efficiency, 
and ability to handle high-dimensional, non-lin-
ear optimization problems. In this section, we will 
describe the key algorithms used in our study: 
RMSProp, RMSProp with gradient clipping, and 
Proximal Gradient Descent. Each of these algo-
rithms offers unique advantages and has been tai-
lored to fit the specific requirements of our trans-
portation cost function optimization model.

We suppose that our transportation cost func-
tion is convex, differentiable, and given by:

C x y x y t
Q x y

Q x y
t D x y x y1 1 2 2

2 2

1 2
1 1 2 2, , , ,

,

,
, , ,� � � � �

� �
� � � �  (1)

where x y x y1 1 2 2, , ,  – are the coordinates of 
the origin and delivery, t  – truck cost coefficient, 
including expenses related to the driver and truck 
operation, Q x y,� �  – quality function of the loca-
tion, D x y x y1 1 2 2, , ,� �  – distance function, in our 
research it is the function composition of Euclid-
ian distances between two points. Therefore, we 
can use some gradient methods to minimize cost 
function.

We begin with an overview of the RMSProp 
algorithm, a popular choice in the field of machine 
learning for its adaptive learning rate capabilities. 
Next, we explore the variant of RMSProp with gra-
dient clipping, which helps in managing the issues 
related to exploding gradients, ensuring more sta-
ble training processes. Finally, we delve into the 
Proximal Gradient Descent method, which is par-
ticularly effective for optimization problems involv-
ing constraints and regularization terms, making it 
well-suited for our discrete logistics scenarios.

By leveraging these algorithms, we aim to 
achieve a balance between minimizing transpor-
tation costs and maintaining high service quality, 
thereby enhancing the overall efficiency of logis-
tics operations.

RMSProp, an adaptive learning rate optimiza-
tion algorithm introduced by (Boyd, Parikh, 2013, 
p 130), offers significant advantages for optimiz-
ing complex transportation cost functions in logis-
tics. This algorithm addresses the limitations of 
traditional gradient descent methods, particularly 
in non-convex and high-dimensional optimization 
problems.

In our context, RMSProp is particularly useful 
due to its ability to dynamically adjust the learning 
rate for each parameter, ensuring efficient conver-
gence and stability. This is crucial when dealing 
with the coordinates of origin and delivery points. 
By maintaining a moving average of the squared 
gradients, RMSProp normalizes these gradients, 
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preventing the learning rate from becoming exces-
sively small or large. This capability is essential for 
effectively navigating the complex and potentially 
unstable cost landscape in logistics optimization.

Given the non-linear nature of our objective 
function, which involves multiple variables such 
as geographic coordinates and cost coefficients, 
RMSProp’s adaptive learning rate helps in achiev-
ing faster convergence and more stable solu-
tions. This makes it a valuable tool for enhancing 
the efficiency and accuracy of our transportation 
cost function optimization efforts. Formally, given 
a parameter vector θ , in our case it is the vector 
of coordinates of an origin and a delivery, and the 
constant of the expenses connected to the truck 
and an objective function f �� �  to be minimized, 
RMSProp updates the parameters as follows:

1. Compute gradient � � �f t�  with respect to θ  
at iteration t .

2. Update the exponentially decaying average 
of squared gradients:

E f E f ft t t� � ��
�

�
� � � � ��

�
�
� � �� � � � �� ��� � � � �

2

1

2 2
1  (2)

where ρ  is a decay rate set to 0.999 after tun-
ning.

3. Update the parameter vector θ :

� �
�

�
�t t

t

t

E f
f� � �

� � ��
�

�
� �

�� � �1
2 

        (3)

Where η  – is the global learning rate 1e-6 and 
  is the small constant to avoid division by zero.

RMSProp with Gradient Clipping, an 
enhancement of the RMSProp optimization algo-
rithm, effectively addresses the challenges posed 
by exploding gradients during the optimization pro-
cess. This technique is particularly advantageous 
for complex problems like transportation cost opti-
mization, where the objective function can exhibit 
steep gradients and significant variability.

In the context of our problem, RMSProp with 
Gradient Clipping improves the stability and con-
vergence of the optimization process. Gradient 
clipping, a technique used to limit the size of the 
gradients, prevents them from becoming exces-
sively large and causing instability. By incorpo-
rating gradient clipping into RMSProp, we ensure 
more stable and reliable updates during the opti-
mization process. This results in more efficient 
and accurate convergence, making it a valuable 
approach for optimizing transportation cost func-
tions in logistics. The algorithm is defined by the 
following steps:

1. Compute gradient � � �f t�  with respect to θ  
at iteration t .

2. Clip the gradient to a maximum norm δ :

� � � �
� � �

� � ��

�
�
�

�

�
�
�

f
f

f
t

t

t

�
�

�

�
max ,1

                 (4)

where � � �f t�  – is the L2 norm of the gradient 
and δ  is the clipping threshold.

3. Update the exponentially decaying average 
of squared gradients:

E f E f ft t t� � ��
�

�
� � � � ��

�
�
� � �� � � � �� ��� � � � �

2

1

2 2
1   (5)

where ρ  is a decay rate set to 0.999 after tun-
ning.

4. Update the parameter vector θ :

� �
�

�
�t t

t

t

E f
f� � �

� � ��
�

�
� �

�� � �1
2 

         (6)

Proximal gradient descent is an optimization 
algorithm designed to handle problems involving 
non-smooth regularization terms, making it par-
ticularly useful for structured optimization prob-
lems commonly encountered in machine learning 
and signal processing introduced in work (Hin-
ton, Srivastava, Swersky, 2012). This algorithm 
extends the standard gradient descent method by 
incorporating a proximal operator, effectively man-
aging the non-differentiable components of the 
objective function.

In our transportation cost optimization problem, 
we incorporate L2 regularization to separate the 
function into potentially non-differentiable and dif-
ferentiable parts. The objective function in our opti-
mization problem can be expressed as:

F x f x g x� � � � � � � �                    (7)

where f x� �  is a smooth, differentiable function 
representing the primary cost function, and g x� �  
is a non-differentiable function representing the 
regularization term.

In the context of L2 regularization, the objective 
function becomes: 

F x f x x� � � � � � �
2

2
                    (8)

where λ
2

2
 x  is the L2 regularization term, λ  is 

the regularization parameter, and  x 2  denotes the 
squared Euclidean norm of the parameter vector x .

The Proximal Gradient Descent algorithm alter-
nates between a gradient descent step on the 
smooth part f x� �  and a proximal operator step on 
the non-differentiable part g x� �

1. Start with an initial guess x0 .
2. Update the parameters by performing a gra-

dient descent step on the smooth part:
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y x f xk k k� � � � � �1 �                    (9)

where η  is the learning rate, and � � �f xk  is the 
gradient of f  at xk .

3. Apply the proximal operator associated with 
the L2 regularization term: 

x prox yk k� �� � �1 1��                  (10)

The proximal operator for L2 regularization is 
defined as:

�prox v
v

�� ��
� � �

�1
                 (11)

This step ensures that the parameters are reg-
ularized, promoting smaller values and preventing 
overfitting.

4. Repeat the gradient descent and proximal 
operator steps until convergence or for a predeter-
mined number of iterations.

Experimental results. In this section, we eval-
uate the performance of the proposed algorithms 
by comparing them. All code is written in Python 
using the NumPy, Matplotlib, and SymPy libraries. 
The experiments are conducted on a MacOS lap-
top with an M1 Pro CPU and 16 GB RAM.

The quality of a logistics area depends on 
several factors, including the number of nearby 
facilities such as warehouses, hubs, airports, and 
docks, as well as the presence of production lines, 
commercial stores, and medical facilities. Gener-
ally, urban areas have the highest quality, while 
rural areas have the lowest. Our quality function is 
defined as follows:

Q x y x e
x

x y e

e

x y x y,� � � �� � � � � ��
�
�

�
�
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�

3 1 10
5

1

3
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x
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� � �

� �

� �� � �

 (12)

The surface plot of the quality function is on 
the figure 1, perfectly represents the nature of the 
logistics areas.

In our experiment distance function shortly can 
be expressed as:

D x y x y d x y x y
k

d x y x y1 1 2 2 1 1 2 2
1 1 2 2

, , , , , ,
, , ,

,� � � � � � � �

where x y1 1, - are coordinates of an origin, 
x y2 2,  – coordinates of a destination, k=50 is coef-
ficient, that is needed to avoid small transportation 
cost to close objects, as we always have minimum 
fair for transportation, d x y x y1 1 2 2, , ,� � – Euclidian 
distance between two points.

Therefore, our transportation cost function can 
be expressed as:

C x y x y t
Q x y

Q x y
t D x y x y1 1 2 2

2 2

1 1
1 1 2 2, , , ,

,

,
, , ,� � � � �

� �
� � � �

where t  is a coefficient of the cost of truck type 
in our experimental case for the sake of simplicity 
is 1,2.

The provided graph on figure 2 and data in 
table 1 illustrate the performance of three optimi-
zation methods–RMSProp, RMSProp with Gradi-
ent Clipping, and Proximal Gradient Descent–on 
the transportation cost function.

The convergence speed of these methods 
varies significantly. RMSProp converged in 1045 
iterations, taking approximately 0.7325 ms per iter-
ation. RMSProp with Gradient Clipping achieved 
the fastest convergence among the methods, 
requiring only 421 iterations, with a time of 0.6968 
ms per iteration. Proximal Gradient Descent con-
verged in 617 iterations, with the lowest time per 
iteration at 0.6832 ms.

The cost function values indicate distinct 
behaviors. All methods show a steep decline in 
the cost function value within the first few hundred 
iterations, indicating rapid initial convergence. 
However, RMSProp and RMSProp with Gradient 
Clipping stabilize at a higher cost function value 
compared to the Proximal Gradient Descent, which 
suggests that while they converge quickly, the final 
optimized value is not as low as that achieved by 
the Proximal method. Proximal Gradient Descent 
reaches a lower cost function value, indicating bet-
ter overall optimization performance in minimizing 
the cost function.

In terms of stability, RMSProp and RMSProp 
with Gradient Clipping show some variability in 
the early stages but stabilize quickly, with gradient 
clipping helping RMSProp achieve faster stabiliza-
tion. Proximal Gradient Descent demonstrates the 
most stable and consistent decrease in the cost 
function without significant fluctuations.

Conclusions. In conclusion, our research high-
lights the effectiveness of gradient-based optimi-
zation methods for addressing transportation cost 
functions, especially when the functions are dif-
ferentiable. Among these methods, the Proximal 
gradient descent method stands out, demonstrat-
ing superior performance in terms of convergence 
speed and solution quality. However, it is impor-
tant to recognize the challenges posed by local 
minima and steep gradients, particularly in the 
cases of RMSProp and RMSProp with gradient 
clipping. The comparative analysis of RMSProp, 
RMSProp with Gradient Clipping, and Proximal 
Gradient Descent reveals distinct strengths and 
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Table 1
Method Time per Iteration (ms) Iterations to Converge

RMSProp 0.7325 1045
RMSProp with Gradient Clipping 0.6968 421
Proximal Gradient Descent 0.6832 617

Fig. 1. Quality function surface plot

Fig. 2. Transportation cost function graph per iteration 
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areas of suitability for each method. RMSProp 
with Gradient Clipping exhibits the fastest conver-
gence in terms of iterations and provides a sta-
ble optimization process due to gradient clipping, 
making it best for scenarios where rapid conver-
gence is essential, and slight deviations in the 
final cost function value can be tolerated. Prox-
imal Gradient Descent achieves the lowest cost 
function value, indicating superior optimization 
performance. It combines stability and efficiency, 
taking the least time per iteration, making it ideal 
for optimization problems where achieving the 
absolute minimum cost function value is crucial, 
even if it requires slightly more iterations than the 
fastest converging method. RMSProp provides a 
balance between convergence speed and opti-
mization quality, though not excelling in either 
aspect compared to the other two methods and is 
suitable for general use when both convergence 

speed and the quality of the optimized result are 
important, but not critical.

Overall, the choice of optimization method should 
be guided by the specific requirements of the prob-
lem at hand. For rapid convergence, RMSProp with 
Gradient Clipping is optimal, whereas for achieving 
the best minimized cost function value, Proximal 
Gradient Descent is preferred.

Future research could benefit from expanding 
the quality function and truck function to reflect 
more realistic scenarios, incorporating real geo-
graphic locations and fuel costs.

The significance and potential of optimizing 
transportation cost functions remain clear, particu-
larly with recent advancements in algorithmic tech-
niques. As the field progresses, integrating innova-
tive methodologies and refining existing approaches 
will be essential for improving the efficiency of trans-
portation cost optimization strategies.
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