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LOGISTICS TRANSPORTATION COST FUNCTION OPTIMIZATION

Purpose of the study. Optimizing transportation costs is a fundamental challenge in logistics management
that requires advanced techniques to handle the complexities of geographical distances, transportation modes,
and operational constraints. This article investigates the use of RMSProp, RMSProp with gradient clipping,
and Proximal Gradient Descent methods in the optimization of transportation cost functions within logistics networks.
By incorporating quality functions associated with both origin and delivery points, the study seeks to achieve
a balance between cost reduction and the enhancement of service quality.

Methodology. We present a comparative analysis of the performance of these methods, focusing on their
efficiency in terms of convergence rates and the quality of the solutions obtained. The research demonstrates that
RMSProp and its variant with gradient clipping are particularly effective in navigating the solution space, offering fast
convergence and high-quality solutions. Proximal Gradient Descent, on the other hand, shows promise in handling
the discrete nature of logistics problems.

Scientific novelty. This study underscores the critical role of transportation cost optimization amidst the growing
demands of global trade and logistics. As global trade expands, the need to minimize transportation expenses
while maintaining service quality becomes increasingly vital. Advanced optimization techniques like RMSProp
and Proximal Gradient Descent can lead to significant cost savings and improved operational efficiency, benefiting
businesses involved in international trade.

Conclusions. In conclusion, this study highlights the effectiveness of RMSProp and Proximal Gradient Descent
in optimizing transportation costs. It emphasizes the necessity of continuous innovation in logistics management to
meet the evolving demands of global trade. Future research directions include the exploration of hybrid optimization
techniques that combine the strengths of gradient-based methods, further enhancing the robustness and applicability
of transportation cost optimization models in diverse logistical environments.

Key words: transportation cost optimization, Gradient descent methods, Logistics management, Evaluating
functions, RMSProp, Proximal gradient descent.
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ONTUMI3ALIA ®YHKUIT NONCTUYHUX BUTPAT HA TPAHCIMOPTYBAHHSA

Mema po6omu. Onmumi3ayisi mpaHcropmHux sumpam € ¢hyHOaMeHmarbHor NPobreMoro 8 yrpaesniHHi foeic-
mukoto, sika nompebye gukopucmarHs nepedosux Memodie 0ns supilueHHs CKradHoLWi8, Nog’s3aHux 3 eeoepadiy-
HUMU 8idcmaHsamu, suGamu mpaHcriopmy ma onepauyitiHUMu obMmexeHHAMU. Y yiti cmammi 0ocnioXyembcsi 8UKO-
pucmaHHs memodie RMSProp, RMSProp 3 obpisaHHsaMm 2padieHma ma lNpokcumarnbHo20 padieHmHozo CriycKy
8 onmumi3auii QoyHKUIU mpaHCropmMHuUX sumpam y fl02icmuyHUX mepexax. Bkroyatouu ¢byHKUIT sKocmi, noe’sizaHi
SIK 3 TOYaMKOBUMU, mMakK i 3 KiHuUesumMu moykamu Aocmasku, 0ocnidxeHHs npagHe docssemu banaHcy MiX 3HUXEH-
HSIM gumpam ma roKpaweHHsIM Kocmi 06¢r1y208y8aHHS.

Memodosnoeis. [NpedcmaeneHo nopigHsIbHUU aHari3 echeKmusHoCcmi yux Memodis, 30CepedXyoHuch Ha ix
eghekmusHoCmI 3 MOYKU 30py weudkocmi 36iKHOCMI ma akocmi ompumaHux piteHs. [JocnidxeHHs 0eMOHCmMpye,
wo RMSProp ma Uoeo eapiaHm 3 obpizaHHsIM 2padieHma € 0cobnueo eghekmusHUMU y Haegieauii 8 npocmopi
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piweHb, 3abearnedyroyu weudKy 36iKHICMb ma 8UCOKOSIKICHI pilueHHS. 3 iHwo20 6oky, lNpokcumansHuli padieHm-
Hut Criyck Mokasye nepcrekmusu y 8upilueHHi QuUCKpemHux rnpobriem no2icmuku.

Haykoea Hoeu3Ha. Lle docriOxeHHsT MIOKPECIIHOE 8ax U8y poslb OrMuMiI3auii mpaHCropmHUX eumpam y KOH-
mekcmi 3pocmarodux gumoe 2r10banbHOi mopeieni ma noaicmuku. 3 po3wupeHHsIM 2nobanbHOI mopeieni Heobxio-
HiCmMb 3HUWXEHHSI mpaHCrnopmHux aumpam, 36epizarodu rpu Ubomy sikicmb obcry2o8yeaHHs, cmae dedarsi ax-
nusiwoto. MNMepedosi memodu onmumisayii, maki sk RMSProp ma lNpokcumaneHul padieHmHul Criyck, MOXymb
npu3secmu 00 3Ha4yHOI EKOHOMIT sUmMpam ma rnoKpaweHHs ornepau,iliHoi eghekmueHOCMI, W0 NPUHOCUMb KOPUCMb
bisHecy, sikull 3aliMaembCsi MiXXHapOOHOK mopaigriero.

BucHoeku. Y 8ucHo8Ky, ue 0ocnidxeHHs niokpecnoe ecpekmusHicmbs RMSProp ma lNpokcumarnsHozo padi-
eHmHozo Criycky 8 onmumisauii mpaHcrnopmHux eumpam. BoHo Hazonowye Ha HeobxiOHOCmi nocmiliHUX IHHO8a-
uiti 8 ynpaeniHHi nozicmukoro 0551 3a0080/1€HHST €80MMOUILIHUX 8uMO2 2nobanbHOI mopeaieni. Hanpsmu malbymHix
docnidxeHb 8KIIHHamb 8UBYEHHS 2ibpudHUX Memodie onmumi3dauii, ki MOEOHyrOMb CUMbHI CMOPOHU Memodis,
3acHosaHux Ha epadieHmax, we binbwe nidsuwyrodu HadiliHicmb ma 3acmocoeHicmb Moderell onmumidayii mpa-
CMOPMHUX 8UMpPam y pi3HOMaHIMHUX fI02iCmMuYHUX cepedosulax.

Knro4oei crioea: onmumizauiss mpaHcrnopmHux sumpam, Memodu epadieHmHo20 criycKy, YnpaesniHHs foaicmu-
Koro, OuiHrosanbHi pyHKuUii, RMSProp, lNpokcumansHuli 2padieHmHul criyck.

Introduction. Optimizing transportation costs Moreover, this study underscores the impor-
is a critical challenge in logistics management, tance of transportation cost optimization amidst
essential for maintaining competitiveness and  the growing demands of global trade and logistics.
profitability in the global market. As businesses  With international trade volumes increasing, the
extend their operations across borders, they face  need to minimize transportation expenses while
complex factors such as geographical distances, = maintaining service quality becomes more critical.
diverse transportation modes, and various oper-  Advanced optimization techniques like RMSProp
ational constraints. Traditional methods often fall and Proximal Gradient Descent can lead to signif-
short in addressing these complexities, highlight- icant cost savings and improved operational effi-
ing the need for advanced optimization techniques.  ciency, benefiting businesses involved in global

Recent advancements in machine learning and  trade (Cordeau, Toth, Vigo, 2002, p 380-404;
optimization have introduced powerful algorithms  Laporte, 2007, p 811-819).
capable of tackling these challenges effectively. In conclusion, the findings of this research
This article explores the application of modern  emphasize the necessity of continuous innova-
optimization algorithms—specifically RMSProp, tion in logistics management to meet the evolving
RMSProp with gradient clipping, and Proximal demands of global commerce. By exploring and
Gradient Descent—in the context of transportation  implementing advanced optimization techniques,
cost optimization within logistics networks. These  logistics managers can ensure their operations
methods, grounded in optimization theory and remain both cost-effective and competitive in an

machine learning, offer efficient solutions by navi-  increasingly complex and dynamic environment.
gating the solution space to find cost-effective and  This article contributes to the existing body of
high-quality transportation plans. knowledge by demonstrating the practical benefits

A key aspect of our study involves integrating  of modern optimization methods in transportation
quality functions related to both origin and delivery ~ cost management, encouraging further research
points, ensuring that cost reduction does not come  and application in this field.
at the expense of service quality. This balance Related works. The optimization of transpor-
is crucial for achieving optimal performance in tation costs is a well-explored area in logistics and
logistics operations, as demonstrated by existing  operations research, encompassing a variety of
research on the topic (Crainic, Perboli, Rosano.  methodologies and approaches. Traditional meth-
2018, p 410-418). ods often involve linear programming, mixed-in-

The research presented in this article includes a  teger programming, and heuristic algorithms to
comparative analysis of RMSProp, its variant with ~ minimize transportation costs while meeting ser-
gradient clipping, and Proximal Gradient Descent.  vice requirements. In recent years, advanced opti-
We focus on their efficiency in terms of convergence  mization techniques, particularly those leveraging
rates and the quality of solutions obtained, providing  gradient-based methods, have gained traction due
valuable insights into their applicability in real-world  to their ability to handle complex and high-dimen-
logistics scenarios. Previous studies have shown  sional problem spaces efficiently.
the potential of gradient-based methods in various Gradient descent and its variants have been
optimization problems (Duchi, Hazan, Singer, 2011,  widely used for optimization problems in vari-
p 2121-2159; Kingma, Ba, 2014) which we aim to  ous domains. (Kingma, Ba, 2014) introduced
build upon in the context of logistics. Adam, an optimization method that computes
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adaptive learning rates for each parameter, show-
ing superior performance in training deep neu-
ral networks. Similarly, (Duchi, Hazan, Singer,
2011, p. 2121-2159) proposed Adagrad, an algo-
rithm that adapts the learning rate based on the
gradients, which has been effective in sparse data
settings. Our approach leverages RMSProp and
its variant with gradient clipping to handle the com-
plexities of transportation cost optimization, pro-
viding a robust solution for point-to-point delivery
scenarios.

Crainic (Crainic, Perboli, Rosano, 2018,
p. 408-410) provided a comprehensive overview of
intermodal freight transportation, highlighting the
challenges and solutions in optimizing transporta-
tion networks. Their work emphasizes the impor-
tance of cost minimization while maintaining ser-
vice quality. Toth and Vigo (Toth,Vigo 2014, p 463)
explored vehicle routing problems, presenting vari-
ous optimization models and algorithms tailored for
transportation cost reduction. Our approach builds
on these foundational works by introducing a dif-
ferentiable quality function that enables the appli-
cation of gradient-based optimization methods,
thereby enhancing the efficiency and effectiveness
of transportation cost management.

The primary advantage of our approach lies in
the differentiability of the quality function, which
allows for the application of gradient descent
methods. This not only ensures faster conver-
gence rates but also provides high-quality solu-
tions. By incorporating both the quality functions
of the origin and destination, along with the truck
expenses and distance function, our model offers
a comprehensive framework for transportation
cost optimization.

Moreover, the use of RMSProp with gradient
clipping helps to mitigate issues related to explod-
ing gradients, ensuring stable and reliable opti-
mization processes. Proximal Gradient Descent
further enhances the model’s capability to handle
discrete and combinatorial aspects of logistics
problems, providing a versatile and effective solu-
tion for real-world applications.

Our study contributes to the ongoing research
in transportation cost optimization by introducing
a novel approach that combines the strengths of
gradient-based methods with a well-defined qual-
ity function. This approach not only addresses the
complexities of point-to-point deliveries but also
sets the stage for further advancements in the
field, encouraging the exploration of hybrid opti-
mization techniques that integrate gradient-based
methods with heuristics and metaheuristics.

Methods of optimization. To address the
complexities involved in optimizing transportation
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costs for point-to-point deliveries, we employ a set
of advanced optimization algorithms. These algo-
rithms are chosen for their robustness, efficiency,
and ability to handle high-dimensional, non-lin-
ear optimization problems. In this section, we will
describe the key algorithms used in our study:
RMSProp, RMSProp with gradient clipping, and
Proximal Gradient Descent. Each of these algo-
rithms offers unique advantages and has been tai-
lored to fit the specific requirements of our trans-
portation cost function optimization model.

We suppose that our transportation cost func-
tion is convex, differentiable, and given by:
Qxeryz)
Q(x..¥)

where x,,y,.X,,y, — are the coordinates of
the origin and delivery, t — truck cost coefficient,
including expenses related to the driver and truck
operation, Q(x,y) — quality function of the loca-
tion, D(x,,y,.X,.y,) — distance function, in our
research it is the function composition of Euclid-
ian distances between two points. Therefore, we
can use some gradient methods to minimize cost
function.

We begin with an overview of the RMSProp
algorithm, a popular choice in the field of machine
learning for its adaptive learning rate capabilities.
Next, we explore the variant of RMSProp with gra-
dient clipping, which helps in managing the issues
related to exploding gradients, ensuring more sta-
ble training processes. Finally, we delve into the
Proximal Gradient Descent method, which is par-
ticularly effective for optimization problems involv-
ing constraints and regularization terms, making it
well-suited for our discrete logistics scenarios.

By leveraging these algorithms, we aim to
achieve a balance between minimizing transpor-
tation costs and maintaining high service quality,
thereby enhancing the overall efficiency of logis-
tics operations.

RMSProp, an adaptive learning rate optimiza-
tion algorithm introduced by (Boyd, Parikh, 2013,
p 130), offers significant advantages for optimiz-
ing complex transportation cost functions in logis-
tics. This algorithm addresses the limitations of
traditional gradient descent methods, particularly
in non-convex and high-dimensional optimization
problems.

In our context, RMSProp is particularly useful
due to its ability to dynamically adjust the learning
rate for each parameter, ensuring efficient conver-
gence and stability. This is crucial when dealing
with the coordinates of origin and delivery points.
By maintaining a moving average of the squared
gradients, RMSProp normalizes these gradients,

C(Xl’yl’XZ’yZ’t): 't'D(Xl’yl’XZ’yZ) (1)
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preventing the learning rate from becoming exces-
sively small or large. This capability is essential for
effectively navigating the complex and potentially
unstable cost landscape in logistics optimization.

Given the non-linear nature of our objective
function, which involves multiple variables such
as geographic coordinates and cost coefficients,
RMSProp’s adaptive learning rate helps in achiev-
ing faster convergence and more stable solu-
tions. This makes it a valuable tool for enhancing
the efficiency and accuracy of our transportation
cost function optimization efforts. Formally, given
a parameter vector 6, in our case it is the vector
of coordinates of an origin and a delivery, and the
constant of the expenses connected to the truck
and an objective function f(6) to be minimized,
RMSProp updates the parameters as follows:

1. Compute gradient Vf(6,) with respect to 6
at iteration t.

2. Update the exponentially decaying average
of squared gradients:

E[vi(0,) |=pE[VF(0..) [+(1-p)(VF(6)) (2)
where p is a decay rate set to 0.999 after tun-

ning.
3. Update the parameter vector 0:

-VE(6,) (3)

0 _ n
0., =6 \/E |:Vf(9t )2:| te

Where n — is the global learning rate 1e-6 and
e is the small constant to avoid division by zero.

RMSProp with Gradient Clipping, an
enhancement of the RMSProp optimization algo-
rithm, effectively addresses the challenges posed
by exploding gradients during the optimization pro-
cess. This technique is particularly advantageous
for complex problems like transportation cost opti-
mization, where the objective function can exhibit
steep gradients and significant variability.

In the context of our problem, RMSProp with
Gradient Clipping improves the stability and con-
vergence of the optimization process. Gradient
clipping, a technique used to limit the size of the
gradients, prevents them from becoming exces-
sively large and causing instability. By incorpo-
rating gradient clipping into RMSProp, we ensure
more stable and reliable updates during the opti-
mization process. This results in more efficient
and accurate convergence, making it a valuable
approach for optimizing transportation cost func-
tions in logistics. The algorithm is defined by the
following steps:

1. Compute gradient Vf(6,) with respect to 6
at iteration t .
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2. Clip the gradient to a maximum norm §&:

VE(6,) = Vi)

max[l, Lf(et )”]
o

where Vf(6,) —is the L2 norm of the gradient
and § is the clipping threshold.

3. Update the exponentially decaying average
of squared gradients:

E[vi(o,) |=pE[VF(0..) [+(1-p)(VF(8,)) (5)

where p is a decay rate set to 0.999 after tun-
ning.
4. Update the parameter vector 6:

—0 _ n
0., =0, \/E[Vf(et)2:|+€

Proximal gradient descent is an optimization
algorithm designed to handle problems involving
non-smooth regularization terms, making it par-
ticularly useful for structured optimization prob-
lems commonly encountered in machine learning
and signal processing introduced in work (Hin-
ton, Srivastava, Swersky, 2012). This algorithm
extends the standard gradient descent method by
incorporating a proximal operator, effectively man-
aging the non-differentiable components of the
objective function.

In our transportation cost optimization problem,
we incorporate L2 regularization to separate the
function into potentially non-differentiable and dif-
ferentiable parts. The objective function in our opti-
mization problem can be expressed as:

F(x)=f(x)+g(x) (7)

where f(x) is a smooth, differentiable function

representing the primary cost function, and g(x)

is a non-differentiable function representing the
regularization term.

In the context of L2 regularization, the objective
function becomes:

(4)

-VE(6,) (6)

(8)

where A | x | is the L2 regularization term, A is
the regular?zation parameter, and || x ||* denotes the
squared Euclidean norm of the parameter vector x .

The Proximal Gradient Descent algorithm alter-
nates between a gradient descent step on the
smooth part f(x) and a proximal operator step on
the non-differentiable part g(x)

1. Start with an initial guess x,.

2. Update the parameters by performing a gra-
dient descent step on the smooth part:

F(X):f(x)+%||x||2
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Yia =X _an(Xk) 9)

where 7 is the learning rate, and Vf(x, ) is the
gradient of ¢ at x, .

3. Apply the proximal operator associated with
the L2 regularization term:

X = pfOXn;v(ykﬂ) (10)

The proximal operator for L2 regularization is
defined as:

"4
1+ ni (M
This step ensures that the parameters are reg-
ularized, promoting smaller values and preventing
overfitting.

4. Repeat the gradient descent and proximal
operator steps until convergence or for a predeter-
mined number of iterations.

Experimental results. In this section, we eval-
uate the performance of the proposed algorithms
by comparing them. All code is written in Python
using the NumPy, Matplotlib, and SymPYy libraries.
The experiments are conducted on a MacOS lap-
top with an M1 Pro CPU and 16 GB RAM.

The quality of a logistics area depends on
several factors, including the number of nearby
facilities such as warehouses, hubs, airports, and
docks, as well as the presence of production lines,
commercial stores, and medical facilities. Gener-
ally, urban areas have the highest quality, while
rural areas have the lowest. Our quality function is
defined as follows:

prox,; (v)

2

Qxy)=3(a-x) e v 10Xy

_l.e’(’”l)z’yQ +5(£—X5 _y7j.e’x2’y2 _
3 5 (12)

Lgterr o X ys _yr)exr -
3 5

Lt r g0
3

The surface plot of the quality function is on
the figure 1, perfectly represents the nature of the
logistics areas.

In our experiment distance function shortly can
be expressed as:

k

D(X,,Y1: X5 Y5) = (X0, Y1 X5, Yo ) +
(Xl Y. X, yz) (Xl Y. X, y2)+d(X1,Y1'X2'y2)

where x,,y,- are coordinates of an origin,
X,,y, — coordinates of a destination, k=50 is coef-
ficient, that is needed to avoid small transportation
cost to close objects, as we always have minimum
fair for transportation, d(x,,y,.x,,y, — Euclidian
distance between two points. '
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Therefore, our transportation cost function can
be expressed as:

Q(x,.Y,)
Q(x1.Y:)

where ¢ is a coefficient of the cost of truck type
in our experimental case for the sake of simplicity
is 1,2.

The provided graph on figure 2 and data in
table 1 illustrate the performance of three optimi-
zation methods—RMSProp, RMSProp with Gradi-
ent Clipping, and Proximal Gradient Descent—on
the transportation cost function.

The convergence speed of these methods
varies significantly. RMSProp converged in 1045
iterations, taking approximately 0.7325 ms per iter-
ation. RMSProp with Gradient Clipping achieved
the fastest convergence among the methods,
requiring only 421 iterations, with a time of 0.6968
ms per iteration. Proximal Gradient Descent con-
verged in 617 iterations, with the lowest time per
iteration at 0.6832 ms.

The cost function values indicate distinct
behaviors. All methods show a steep decline in
the cost function value within the first few hundred
iterations, indicating rapid initial convergence.
However, RMSProp and RMSProp with Gradient
Clipping stabilize at a higher cost function value
compared to the Proximal Gradient Descent, which
suggests that while they converge quickly, the final
optimized value is not as low as that achieved by
the Proximal method. Proximal Gradient Descent
reaches a lower cost function value, indicating bet-
ter overall optimization performance in minimizing
the cost function.

In terms of stability, RMSProp and RMSProp
with Gradient Clipping show some variability in
the early stages but stabilize quickly, with gradient
clipping helping RMSProp achieve faster stabiliza-
tion. Proximal Gradient Descent demonstrates the
most stable and consistent decrease in the cost
function without significant fluctuations.

Conclusions. In conclusion, our research high-
lights the effectiveness of gradient-based optimi-
zation methods for addressing transportation cost
functions, especially when the functions are dif-
ferentiable. Among these methods, the Proximal
gradient descent method stands out, demonstrat-
ing superior performance in terms of convergence
speed and solution quality. However, it is impor-
tant to recognize the challenges posed by local
minima and steep gradients, particularly in the
cases of RMSProp and RMSProp with gradient
clipping. The comparative analysis of RMSProp,
RMSProp with Gradient Clipping, and Proximal
Gradient Descent reveals distinct strengths and

C(X, Y1 X5, Yout) = t-D(X, Y1, X0 Y,)
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Fig. 2. Transportation cost function graph per iteration
Table 1
Method Time per Iteration (ms) Iterations to Converge
RMSProp 0.7325 1045
RMSProp with Gradient Clipping 0.6968 421
Proximal Gradient Descent 0.6832 617
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areas of suitability for each method. RMSProp
with Gradient Clipping exhibits the fastest conver-
gence in terms of iterations and provides a sta-
ble optimization process due to gradient clipping,
making it best for scenarios where rapid conver-
gence is essential, and slight deviations in the
final cost function value can be tolerated. Prox-
imal Gradient Descent achieves the lowest cost
function value, indicating superior optimization
performance. It combines stability and efficiency,
taking the least time per iteration, making it ideal
for optimization problems where achieving the
absolute minimum cost function value is crucial,
even if it requires slightly more iterations than the
fastest converging method. RMSProp provides a
balance between convergence speed and opti-
mization quality, though not excelling in either
aspect compared to the other two methods and is
suitable for general use when both convergence

speed and the quality of the optimized result are
important, but not critical.

Overall, the choice of optimization method should
be guided by the specific requirements of the prob-
lem at hand. For rapid convergence, RMSProp with
Gradient Clipping is optimal, whereas for achieving
the best minimized cost function value, Proximal
Gradient Descent is preferred.

Future research could benefit from expanding
the quality function and truck function to reflect
more realistic scenarios, incorporating real geo-
graphic locations and fuel costs.

The significance and potential of optimizing
transportation cost functions remain clear, particu-
larly with recent advancements in algorithmic tech-
niques. As the field progresses, integrating innova-
tive methodologies and refining existing approaches
will be essential for improving the efficiency of trans-
portation cost optimization strategies.
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