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IMPROVING KEYSTROKE DYNAMICS AUTHENTICATION: BALANCING ACCURACY
AND USER EXPERIENCE THROUGH EFFICIENT TRAINING

The aim of this study is to enhance the security and user experience of two-factor authentication systems through
the application of keystroke dynamics, a form of behavioral biometrics. Keystroke dynamics analyze the unique
typing patterns of users to offer a biometric factor for authentication, which complements the traditional knowledge-
based method (username and password). This study specifically seeks to evaluate different anomaly detection
algorithms to determine the minimum number of password repetitions required for effective training, optimizing both
system security and user convenience.

Methodology. The study replicates and extends the evaluation procedure of Killourhy and Maxion, who provided
a public dataset and a detailed protocol for analyzing keystroke dynamics. The algorithms are evaluated by varying
the number of password repetitions used for training, with the aim of determining the optimal training size that
balances security (lower EER) and efficiency (reduced user effort).

Scientific Novelty. The scientific novelty of this research lies in its investigation of the trade-off between security
and user convenience in keystroke dynamics-based authentication systems. While many studies have focused on
improving the accuracy of anomaly detection, this research emphasizes the importance of minimizing the training
burden on users by determining the minimum number of password repetitions required for stable performance. By
focusing on training efficiency and computational resource optimization, this research advances the field of behavioral
biometrics and contributes to the practical deployment of keystroke dynamics in real-world authentication systems.

Conclusion. The study demonstrates that keystroke dynamics can significantly improve the security of two-
factor authentication systems without imposing excessive burdens on users. The findings confirm that the Manhattan
(scaled) and Outlier Count (z-score) algorithms perform relatively well, particularly when the training set size is small,
which is critical for practical use in authentication systems where users may be unwilling to provide numerous
password repetitions. This study not only replicates the results of prior research but also contributes new insights
into optimizing the training process for keystroke dynamics-based anomaly detection. Future work may explore
integrating keystroke dynamics with other biometric factors, such as mouse dynamics, to develop even more secure
and user-friendly multimodal authentication systems. Furthermore, continuous authentication mechanisms represent
an exciting direction for future research, providing ongoing verification of user identity throughout a session rather
than solely at login.

Key words: keystroke dynamics, two-factor authentication, anomaly detection, behavioral biometrics, user
authentication, security, continuous authentication.
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NMOKPALLEHHA ABTEHTU®IKALIT HA OCHOBI AUHAMIKU HATUCKAHHSA KNABILL:
BAJNTAHCYBAHHA TOYHOCTI TA 3PYYHOCTI KOPUCTYBAHHA
YEPE3 E®PEKTUBHE HABYAHHA

Mema ybozo docnidxeHHs — nokpawumu 6e3neky ma 0oceid kopucmysadie cucmem 080¢hakmopHOI aymeH-
mucpikauii wnsixom 3acmocyeaHHs OUHaMIKU HamuckaHHS Krasiw, ¢popmu roeediHkosoi biomempii. [JuHamika
HamucKaHHS Kriasiw aHanisye yHikanbHi wabroHu Habopy mekcmy Kopucmyseadie Orisi cmeopeHHs1 bioMempu4HO20
hakmopy asemeHmudbikauii, skuli donosHroe mpaduuyitiHut memod, wo basyembcsi Ha 3HaHHSX (iM’s1 Kopucmyeaya
ma naposb). Lle 0ocnidxeHHs1 cripsMosaHe Ha OUIHKY Pi3HUX arn2opummie eusieneHHs1 aHomarid, wob eusHadumu
MiHIMarbHy KinbKiCmb No8mopeHb naporis, HeobxiOHy Ot echeKmueHO20 Hag4yaHHsI, oMmuMiI3yto4u siKk 6e3neky cuc-
memu, mak i 3py4Hicmb 055 Kopucmyeaya.

Memodonoezis. [ocnidxeHHsi nosmopioe i po3wuptoe npouedypy ouiHku Killourhy ma Maxion, siki Hadanu
nybniyHul Habip daHux i demarnbHUl NPomokon O aHanidy duHaMiKu HamucKaHHs Knaeiw. An2opummu OUiHIo-
IoMbCS WIISIXOM 88pilo8aHHs KiflbKoCmi M08MopeHb naporis, sukopucmaHux Ol Hag4yaHHS, 3 MeMoK 8U3Ha4YeH-
HS1 orImuMarsibHo20 PO3MIpy HagyaHHs, Wo 3banaHcosye besneky (MeHwul EER) ma egpekmusHicmb (3MeHWeHe
HaeaHmMa)eHHsI Ha Kopucmysaya).

Haykoea Hoeu3Ha. Haykoea Ho8U3Ha Ub020 OOCIOXKeHHsT norisieae 8 G0CIOXEHHI KOMIpoMicy Mix besmne-
KO0 | 3pyyHicmio 07151 Kopucmyeadya 8 cucmemax asmeHmucbikauii Ha 0CHO8i OUHaMIKU HamuCKaHHS Knaeiw. Xo4a
bazamo docridxeHb 30cepedKeHi Ha MOMIMWEeHHI MOYHOCMI 8USIBIEHHST aHOMaril, ue O0CiOXKeHHS MiOKpecsoe
gaxnusicms MiHiMi3auii HagaHMaXeHHs Ha Kopucmyeadie WiIsXoM 8U3HaYeHHs MiHIMarbHOI Kiflbkocmi no8mopeHs
napornsi, HeobxidHoi 0ns cmabinbHoi pobomu. 30cepedxXyroHu yeazy Ha egheKmueHoOCMi Hag4yaHHsI ma ornmumisa-
yii ob4ucnosanbHUX pecypcis, ue 00ciOXeHHs npocysae 2ay3sb 1o8ediHKoeoi biomempii i cripusie npakmu4YHoMYy
8r1posadKeHHI0 QUHaMIKU HamUCKaHHS Krasiwl y peasibHUX cucmemax asmeHmudbikaui.

BucHoeok. [JocnioxeHHs1 deMoHecmpye, wo QuHaMika HamuCKaHHS Kraeill MoXe cymmego rnokpawumu 6es-
neky cucmem dsochakmopHoi asmeHmudbikauii 6e3 HaknaleHHs1 HaOMIPHO20 HaBaHMAaXeHHS Ha Kopucmyeadig.
Pesynsmamu nidmeepdxyroms, wo aneopummu Manhattan (scaled) i Outlier Count (z-score) npautoromp 8i0HOCHO
0obpe, 0cobnuso Konu po3mip Hag4yarbHO20 Habopy Manull, Wo KpUMUYHO 0115 NPpakmu4yHO20 8UKOPUCMAaHHS 8 cuc-
memax aymeHmudpikauii, e kopucmysadi MoXymb bymu He eomosi Halamu YUCEHHi MO8MOpPeHHs napors. Lle
docnidxeHHs He nuwe rnoemoproe peldyrnbmamu rnornepedHix 0ocnidxeHb, ane U 8HOCUMb HO8i idei drs onmumisauji
rpouecy Hag4yaHHs 01151 8USIBIIEHHST aHOMaTil Ha OCHO8I OUHaMIKU HamuCKaHHS Krasiw. MaltibymHi pobomu MOXymb
docnidxyeamu iHmezpayito OuHaMiKu HamucKaHHsI Knasiw 3 iHwumu bioMempuyHUMu ¢hakmopamu, maxkumu siK
OuHamika muwi, wob pospobumu we binbw be3neyHi ma 3py4Hi 6aecamomolarnsHi cucmemu asmeHmucpikayii. Kpim
moeo, MexaHismu besnepepeHoi asmeHmudbikauii € 3axormoryYuM HanpsiMkom 0ns malibymHix docrnioxeHb, 3abes-
fieyytoyu nocmitiHy nepesipky ideHmMu4yHoOCmi Kopucmysadya Mpoms2oM cecil, a He MinbKu Mpu 8Xo0i.

Knro4oei crioea: duHamika HamuckaHHS Knasiw, 0soghakmopHa asmeHmudikaujisi, 8usiereHHs1 aHomarit, nose-
diHkosa biomempisi, asmeHmuikauiss Kopucmysadig, 6e3neka, besrnepepeHa asmeHmucpikauisi.

Introduction. User authentication is the pro-  possession-based (something a user has, e.g.,
cess of verifying a user’s identity widely used in  their personal smartphone), and biometric-based
computer systems to protect data from unauthor-  (something a user is, e.g., their iris scan). The
ized access. Typically, a username and password introduction of the second factor makes it harder
pair is used as a piece of the knowledge that only  for impostors to deceive the authentication sys-
the genuine user should know to confirm their tem. However, the possession-based factors usu-
identity. However, such an approach is often not  ally require additional effort from the genuine user,
secure enough, leading to the introduction of such as unlocking their smartphone and entering
the so-called «second factor» in the authentica- a PIN code or responding to a natification, thus
tion process. Generally, there are three types of  worsening the user experience. Biometric authen-
the factors: knowledge-based (something a user tication uses unique biometric traits of individuals
knows, e.g., the username and password values), to verify their identity. These traits can be broadly
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divided into physiological (e.g., iris scan, finger-
print, voice) and behavioural (e.g., typing rhythms,
mouse or touchscreen navigation patterns). In par-
ticular, keystroke dynamics is the process of iden-
tifying individual users on the basis of their typing
rhythms, which are in turn derived from the times-
tamps of key-press and key-release events on the
keyboard (Maxion & Killourhy, 2010, p. 201-210).
This form of authentication uses behavioural biom-
etric traits of users. If the authentication process is
performed once when the user enters the system,
it is called «static» authentication. If the biometric
authentication is performed continuously during
the user’s session, it is called the «continuous»
authentication (Ryu et al., 2021, p. 34541-34557).
The current study examines a two-factor authen-
tication system that verifies a user’s identity by
confirming their password as something that only
the genuine user knows and applying keystroke
dynamics on the timestamps of the keyboard
events produced during the password entry. Such
a system does not require any additional effort
from users while being more secure due to the use
of a second factor for authentication.

Related works. Killourhy and Maxion ena-
bled the comparison of different anomaly detec-
tors’ performance across studies in the keystroke
dynamics literature. They publicly shared a data
set, developed an evaluation procedure, and
measured the performance of various anoma-
ly-detection algorithms on an equal basis (Maxion
& Killourhy, 2010, p. 201-210). Typing data was
collected from 51 subjects, each typing the same
password 400 times. The researchers extracted
various timing features from the raw data, such as
keydown-keydown times and hold times. Fourteen
anomaly detectors from the literature were reim-
plemented and evaluated according to a well-de-
fined procedure. Another study by the same
authors analysed factors influencing the accuracy
of anomaly-detection algorithms: the algorithm
itself, amount of training, choice of features, use
of updating, impostor practice, and typist-to-typist
variation (Killourhy & Maxion, 2010, p. 256-276).
Their results indicated that the algorithm, amount
of training, and use of updating were highly influ-
ential while impostor practice and feature set had
minor effect. Some typists were significantly easier
to distinguish than others. The researchers con-
sidered training amounts of 5, 50, 100, and 200
password repetitions done by the genuine user
during the model training stage. While their study
aimed to determine whether the amount of training
could significantly influence the results in general,
the problem of achieving stable accuracy rates
with minimal training was not covered. Comparing
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the number of password repetitions required from
users to train different anomaly-detection mod-
els can help select better models in terms of user
experience, which is covered in this study. Addi-
tionally, determining the minimum number of repe-
titions needed to train an anomaly-detection model
can help choose a reasonable size for the sliding
window used in updating typing profiles, thus opti-
mizing the use of computational resources.

Purpose. The purpose of this study is to repro-
duce the evaluation procedure described by Kil-
lourhy and Maxion, develop a method for compar-
ing the minimum number of password repetitions
needed to achieve stable accuracy rates for the
best-performing anomaly detectors identified by
the researchers, and share the Python source
code with the research community to facilitate
reproducibility. By determining the minimum num-
ber of repetitions required for training, the study
aims to optimize the size of the sliding window
used in updating typing profiles, thereby conserv-
ing computational resources.

Methodology. The data set shared by Killou-
rhy and Maxion consists of keystroke-timing data
collected from 51 subjects over 8 sessions. Each
subject was asked to type the same password,
«.tiebSRoanl», 50 times during each session, pro-
viding timing information for a total of 400 pass-
word entries. The rationale for the choice of the
password and other aspects of the data collection
were described in detail by the researchers (Killou-
rhy & Maxion, 2009, p. 125-134).

The raw typing data, such as key events and
timestamps, cannot be used directly by an anom-
aly detector. Instead, sets of timing features are
extracted from this raw data and organized into a
vector of times, known as a timing vector. These
features are used to train and test the detectors.
The time between the key presses of consecu-
tive keys (Keydown-Keydown), the time between
the release of one key and the press of the next
(Keyup-Keydown), and the time between the press
and release of each key (Hold) are all available
as features in the timing vectors provided by the
mentioned data set. However, a study has shown
there is no difference in anomaly detection accu-
racy among feature sets that include the Hold
features and at least either Keydown-Keydown
or Keyup-Keydown features (Killourhy & Max-
ion, 2010, p. 256-276). Therefore, only the Hold
and Keyup-Keydown features are used from the
data set for the evaluation procedure of the cur-
rent study to conserve computational resources.
The Enter key is also considered part of the pass-
word, so its Keyup-Keydown and Hold features
are included as well. Given the aforementioned
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password and the Enter key inclusion, each tim-
ing vector consists of 21 features: 11 Hold features
and 10 Keyup-Keydown features.

Killourhy and Maxion implemented and evalu-
ated 14 anomaly detectors from the keystroke-dy-
namics and pattern-recognition literature (Killou-
rhy & Maxion, 2009, p. 125-134). They observed
a clear division between seven detectors that were
competitive in their evaluation and seven that were
not. In the current study, the 5 best-ranked anomaly
detectors have been reproduced according to the
descriptions provided by the researchers: «Man-
hattan (scaled)», «Nearest Neighbour (Mahalano-
bis)», «Outlier Count (z-score)», one-class SVM
and «Mahalanobis».

Typing data produced by an impostor should
be detected as anomalous by an anomaly detec-
tor. In this context, the presence of an anomaly is
referred to as a positive outcome, while its absence
is called a negative outcome. When an anomaly
detector incorrectly identifies a timing vector pro-
duced by the genuine user as anomalous, this
mistake is termed a «false positive». All possible
outcomes are shown in Table 1.

An anomaly detector produces a numeric
value as a score assigned to the input timing vec-
tor. A threshold value must be chosen so that the
detector marks the timing vector as anomalous if
the score exceeds the threshold. The choice of a
threshold value greatly influences the performance
rates of detectors, so a range of threshold values
should be used for performance measurements.

Given a certain threshold value, the True Posi-
tive Rate (TPR) and the False Positive Rate (FPR)
are defined as follows:

TP
TP+ FN

R — FP
FP+TN

In the keystroke-dynamics authentication liter-
ature, the True Positive Rate (TPR), also known
as the «Hit Rate», indicates the frequency with
which a detector correctly identifies an impostor.
The «Miss Rate», defined as (1 — TPR), reflects
the rate at which an impostor is mistakenly iden-
tified as a genuine user. The False Positive Rate
(FPR), or «False-Alarm Rate» (FAR), denotes the

frequency with which a genuine user is incorrectly
rejected.

Given a constant set of the Hold and Keyup-Key-
down features selected, the evaluation procedure
described by Killourhy and Maxion (Killourhy &
Maxion, 2010, p. 256-276) uses the first T training
repetitions produced by a genuine-user subject S
to train an anomaly-detection algorithm A. Here T
can be 5, 50, 100 or 200 repetitions, S can be any
of the subject identifiers specified in the data set,
and A can be one of the mentioned algorithms. At
the scoring stage, the genuine-user test data is
composed of the subsequent 200 repetitions from
(T + 1) to (T + 200). The «practiced» impostor test
data consists of the last 5 password repetitions
from each of the remaining 50 users, resulting in
a total of 250 impostor timing vectors. As shown
by the researchers, impostor practice represents a
minor threat to the accuracy of keystroke-dynam-
ics detectors but is still included in the current eval-
uation procedure to ensure realism.

The evaluation procedure for the sliding-win-
dow updating case is more complex. The concept
involves sliding a window of size T over the genuine
user’s typing data, advancing the window in incre-
ments of 5 repetitions for computational efficiency.
For each window, the detector is trained on the rep-
etitions within that window and then tested using
the next five repetitions. This process is repeated
as the window is incremented. Since there are 200
repetitions of genuine-user test data, this results in
40 cycles of training and testing (200/5). The eval-
uation procedure is well-defined by the research-
ers (Killourhy & Maxion, 2010, p. 256-276) and
is accurately reproduced in the current study, as
shown in the following sections. According to their
results, the use of updating is a highly influential
factor.

Across the keystroke-dynamics authentication
literature, such anomaly detectors performance
measures as the Equal Error Rate (EER) and
the Zero-Miss False Alarm Rate (ZMFAR) have
been used. They both give an understanding of a
detector’s performance over a range of different
treshold values. The EER is defined as the point
at which the Miss Rate and the False-Alarm Rate
are equal. At this point, the system’s rate of incor-
rectly rejecting genuine users is equal to the rate

Table 1

Table of possible outcomes of an anomaly detector’s work

Anomaly detection result

Anomaly is actually present
(Impostor)

No anomaly is actually present
(Genuine user)

Anomaly is detected True Positive (TP)

False Positive (FP)

No anomaly is detected False Negative (FN)

True Negative (TN)
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of incorrectly accepting impostors. The EER pro-
vides a single value that reflects the overall accu-
racy of the system, with a lower EER indicating
better performance. The ZMFAR is defined as the
minimum False-Alarm Rate when the threshold is
set to ensure the Miss Rate is zero. This metric
reflects a detector’s performance under the condi-
tion of zero tolerance for impostors involved in the
performance evaluation.

A Receiver Operating Characteristic (ROC)
curve is used to visualize a detector’s performance
across various threshold values. Figure 1 illus-
trates an example of a ROC curve for the «Outlier
Count (z-score)» algorithm, trained on data from
the subject «s010» (excluding Keydown-Keydown
features, with a sliding window enabled, and a
training set size of 15).

Intuitively, a larger area under the ROC curve
indicates higher overall performance of an anom-
aly detector. While minor variations in the ratio
of outcomes can significantly affect the ZMFAR

value, EER is a more robust and balanced per-
formance measure that represents the trade-off
between false alarms and misses. Consequently,
EER has been selected to compare the perfor-
mance of detectors, as demonstrated in the follow-
ing sections.

The anomaly-detection algorithms and the
described evaluation procedure have been imple-
mented using Python, NumPy, Pandas, and scikit-
learn. These implementations have been shared
on GitHub to support further research (Kaidalov,
2024).

Findings. Firstly, it was crucial to replicate the
EER and ZMFAR values reported by Killourhy and
Maxion from their initial comparison of anomaly
detectors (Killourhy & Maxion, 2009, p. 125-134).
The values reported by the researchers and those
reproduced in the current study are presented in
Table 2.

While most of the rates match with insignificant
differences, there is an almost 2% difference in the

1.0 4 3¢ 3%

0.9 -
0.8 -
0.7 1
0.6 -
0.5 1
0.4 -
0.3 1
0.2 1
0.1
0.0

Equal Error Rate

True Positive Rate (Hit Rate)

- ] ¥

Zero-Miss False Alarm Rate

00 01 0.2 03 04 05 0.6 0.7 0.8 0.9 1.0
False Positive Rate (False Alarm Rate)

Fig. 1. An example ROC curve for the «Outlier Count (z-score)» algorithm

Table 2

Table of the EER and ZMFAR values reported in (Killourhy & Maxion, 2009, p. 125-134)
and reproduced in the current study

Average EER Average ZMFAR
Anomaly-detection in (Killourhy & Reproduced in (Killourhy & Reproduced
algorithm Maxion, 2009, p. average EER Maxion, 2009, p. | average ZMFAR
125-134) 125-134)

Manhattan (scaled) 0.096 (0.069) 0.098 (0.068) 0.601 (0.337) 0.610 (0.333)
Nearest Neighbour
(Mahalanobis) 0.100 (0.064) 0.100 (0.063) 0.468 (0.272) 0.468 (0.270)
Outlier Count (z-score) 0.102 (0.077) 0.101 (0.076) 0.782 (0.306) 0.782 (0.303)
One-class SVM 0.102 (0.065) 0.119 (0.059) 0.504 (0.316) 0.500 (0.282)
Mahalanobis 0.110 (0.065) 0.110 (0.064) 0.482 (0.273) 0.482 (0.270)
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EER for the one-class SVM algorithm. This dis-
crepancy can be attributed to differences in imple-
mentations. Although the researchers specified
the v parameter as 0.5, they did not indicate which
kernel was used. In the current study, the default
values of the scikit-learn package were used for
the remaining parameters of OneClassSVM during
evaluation.

The extended evaluation procedure published
by Killorhy and Maxion (Killourhy & Maxion,
2010, p. 256-276) had introduced such parame-
ters as sliding windows updates, training amount,
impostors practice, and a feature set. The exact
EER values for the ‘Manhattan (scaled)’ algorithm
were reported as 7.1% for unpracticed impostors
and 9.7% for practiced impostors. Sliding window
updates were used, Keydown-Keyup features and
Enter features were excluded, and the training
amount was set to 100. The evaluation procedure
reproduced in this study successfully replicates
the EER values reported by the researchers.

The implemented anomaly detectors were
evaluated with training set sizes ranging from 5
to 100, increasing by increments of 5 password
repetitions. Given its significant impact, updating
was enabled. The feature set included Hold and
Keyup-Keydown features, as well as Enter key
features. To ensure realism, impostor practice was
enabled. The obtained EER values are presented

in Table 3, and a visual comparison of EER values
at different training set sizes is shown in Figure 2.

Figure 2 presents a line plot illustrating the
Equal Error Rate (EER) of various anomaly detec-
tion algorithms as a function of training set size.
The x-axis represents the training set size, ranging
from 5 to 100, while the y-axis indicates the EER,
ranging from O to 0.35.

The «Manhattan (scaled)» algorithm shows
a gradual decline in EER as the training set size
increases, indicating improved performance with
more training data. In contrast, the «Outlier count
(z-score)» algorithm initially decreases but then
shows an increase in EER, suggesting possible
overtraining as the model becomes too special-
ized to the training data and loses generalization
capability.

The «Nearest Neighbour (Mahalanobis)» algo-
rithm demonstrates only minor improvements over
the Mahalanobis algorithm, despite requiring sig-
nificantly higher computational resources. This
suggests that the algorithm’s additional complex-
ity may not be justified given the marginal per-
formance gains. The one-class SVM algorithm
maintains a relatively constant high EER across all
training set sizes.

Notably, the EER values for the «Manhattan
(scaled)» and «Outlier count (z-score)» algorithms
are relatively lower at smaller training set sizes,

Table 3

Table of EER values for each reproduced anomaly detector
at training set sizes ranging from 5 to 100

oG | Macaled) | (Mahalansbis) |  (zscors) | OneciassSVM | Mahalanobis

5 0.135 0.302 0.100 0.282 0.287
10 0.117 0.267 0.093 0.269 0.263
15 0.110 0.228 0.092 0.262 0.227
20 0.109 0.237 0.095 0.257 0.236
25 0.106 0.209 0.099 0.254 0.210
30 0.105 0.173 0.100 0.251 0.173
35 0.104 0.160 0.101 0.248 0.159
40 0.102 0.152 0.101 0.242 0.152
45 0.099 0.143 0.100 0.236 0.143
50 0.097 0.136 0.100 0.232 0.136
55 0.095 0.130 0.099 0.229 0.131
60 0.094 0.125 0.101 0.229 0.128
65 0.093 0.123 0.102 0.223 0.125
70 0.093 0.123 0.102 0.222 0.126
75 0.093 0.122 0.103 0.222 0.126
80 0.093 0.120 0.103 0.220 0.125
85 0.093 0.118 0.103 0.217 0.124
90 0.093 0.118 0.104 0.215 0.123
95 0.092 0.115 0.102 0.212 0.121
100 0.091 0.114 0.103 0.209 0.119
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Fig. 2. The graph of the EER values for each reproduced anomaly detector
at training set sizes ranging from 5 to 100

suggesting higher practical value when limited
data is available.

Conclusion. This study has successfully rep-
licated and extended the evaluation of anomaly
detection algorithms applied to keystroke dynam-
ics for two-factor authentication systems. By
reproducing the performance metrics (EER and
ZMFAR) for various algorithms as initially reported
by Killourhy and Maxion, we have confirmed the
reliability of their findings. Among the algorithms
tested, the «Manhattan (scaled)» and «Outlier
Count (z-score)» showed promising results, espe-
cially when using smaller training sets, which is
critical for practical deployment.

One significant outcome of this research is the
determination of the minimum number of pass-
word repetitions needed to achieve stable accu-
racy rates. This result is particularly valuable for
reducing user effort in the training phase and opti-
mizing computational resources during real-time
authentication processes. The methodology and
Python code made available further contribute to
reproducibility, a key aspect of advancing research
in keystroke dynamics.

Looking forward, several promising areas for
future exploration have emerged. First, while the
current study focused on a single password input,
expanding the analysis to include more diverse
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passwords could improve the robustness of anomaly
detection models. Second, exploring the integration
of keystroke dynamics with other biometric factors,
such as mouse dynamics or touchscreen patterns,
could lead to the development of multimodal biom-
etric systems, offering enhanced security and user
experience. Additionally, improving the performance
of machine learning algorithms, particularly through
the use of deep learning models, might yield better
generalization capabilities for unseen data.

Another avenue for future work includes inves-
tigating the potential for continuous authentication
mechanisms. Rather than only verifying users at
login, continuous authentication can monitor user
behaviour throughout their session, providing
an added layer of security. Lastly, optimizing the
computational efficiency of the system remains a
critical challenge, especially for real-time appli-
cations. Exploring lightweight models or opti-
mizing feature extraction processes could help
deploy keystroke-based authentication systems in
resource-constrained environments.

In conclusion, the findings of this study contrib-
ute to the ongoing development of secure and user-
friendly authentication systems. Future research
should focus on extending the methods presented
here and addressing the emerging challenges in
keystroke dynamics and behavioural biometrics.
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