Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

UDC 004.9; 004.94
DOI https://doi.org/10.32782/1T/2024-3-8

Vitaliia KOIBICHUK

PhD Economics, Associate Professor, Head of the Department of Economic Cybernetics, Sumy State
University, 57, Petropavlivska Str., Sumy, Ukraine, 40000, v.koibichuk@biem.sumdu.edu.ua

ORCID: 0000-0002-3540-7922

Roman KOCHEREZHCHENKO

Master’s Student, Sumy State University, 57, Petropaviivska Str., Sumy, Ukraine, 40000,
r.kocherezhchenko@student.sumdu.edu.ua

ORCID: 0000-0001-7269-4177

Kostiantyn HRYTSENKO

Candidate of Technical Sciences, Associate Professor at the Department of Economic Cybernetics, Sumy
State University,, 57, Petropavlivska Str., Sumy, Ukraine, 40000, k.hrytsenko@biem.sumdu.edu.ua

ORCID: 0000-0002-7855-691X

Valerii YATSENKO

Candidate of Technical Sciences, Associate Professor at the Department of Economic Cybernetics, Sumy
State University, 57, Petropavlivska Str., Sumy, Ukraine, 40000, v.yatsenko@biem.sumdu.edu.ua

ORCID: 0000-0003-2316-3817

Alina YEFIMENKO

PhD, Assistant at the Department of Economic Cybernetics, Sumy State University, 57, Petropavlivska Str.,
Sumy, Ukraine, 40000, a.yefimenko@uabs.sumdu.edu.ua

ORCID: 0000-0002-2810-0965

To cite this article: Koibichuk, V., Kocherezhchenko, R., Hrytsenko, K., Yatsenko, V., Yefimenko, A.
(2024).Alhorytmy protsedurnoiheneratsiiihrovohokontentuzadopomohoiu hrafiv [Algorithmsforprocedural
generation of game content using graphs]. Information Technology: Computer Science, Software
Engineering and Cyber Security, 3, 77-87, doi: https://doi.org/10.32782/1T/2024-3-8

ALGORITHMS FOR PROCEDURAL GENERATION
OF GAME CONTENT USING GRAPHS

Developing unique gaming environments using algorithms based on graph data structures and procedural
content generation can significantly reduce costs while increasing overall team productivity and eliminating the risk
of stagnation in the development process.

The purpose of this research is to analyze, develop and visualize the operation of procedural content generation
algorithms, as well as to study the prospects for their further use in the practical development of game projects.

The scientific novelty is to use graphs for procedural generation of game content. This topic was chosen
due to the fact that creating a game environment can be one of the main and most resource-intensive costs in
the game production process. Procedural content generation can reduce these costs and speed up the development
process. In fact, it is almost impossible to calculate what specific part of the team’s productivity and business benefits
procedural generation brings, since most discoveries in this area are a trade secret of most game studios, however,
this only speaks of the opportunities and benefits that this approach brings.

The methodology is based on The Python programming language as the main tool for studying algorithms,
which was used to develop algorithms, create visualizations and examples of web servers for processing data
generated by graphs.

Conclusion: during development, differences and commonalities in the details of the implementation
of algorithms, as well as the results of content generation, were studied. Differences in the generated graphs were
also demonstrated. Examples of web servers illustrate the potential for further practical application of the developed
algorithms. The results of the study can be used by developers of gaming environments and algorithms researchers
to improve the efficiency of production processes.

Key words: procedural generation, game development, development efficiency, development optimization.

77

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

Bimanis KOUBIYYK

KaHOuOam eKOHOMIYHUX Hayk, doueHm, 3agidysay kaghedpu eKOHOMIYHOI KibepHemuku, CymcbKul OepxasHuli
yHieepcumem, syn. llemponasniecbka, 57, m. Cymu, Ykpaina, 40000

ORCID: 0000-0002-3540-7922

PomaH KOYEPEXXYEHKO
mazicmp, Cymcbkull depxasHuli yHieepcumem, 8yn. llemponasnieceka, 57, M. Cymu, YkpaiHa, 40000
ORCID: 0000-0001-7269-4177

Kocmsinmun NPULJEHKO

kaHOUOam mexHiYHUX Hayk, doueHm Kaghedpu ekoHoMi4HOI kibepHemuku, CymcbKuli depxkagHuli yHisepcumem,
syn. lNemponasniscbka, 57, M. Cymu, Ykpaiva, 40000

ORCID: 0000-0002-7855-691X

Banepiia AYEHKO

KaHOUOam mexHiYHUX Hayk, doueHm Kaghedpu ekoHoMi4HOI kibepHemuku, CymcbKuli depxkasHuli yHisepcumem,
syn. lNemponasniscbka, 57, M. Cymu, Ykpaiva, 40000

ORCID: 0000-0003-2316-3817

AniHa E®IMEHKO

dokmop ¢binocogpii, acucmeHm kaghedpu eKoHOMIYHOI KibepHemuku, CymcbKuli OepxxaeHuli yHieepcumem,
syn. lNemponasniscbka, 57, M. Cymu, Ykpaina, 40000

ORCID: 0000-0002-2810-0965

BibniorpacpiyHnmonunc crarTi: Konbiuyk, B., KouepexuyeHko, P, NpuueHko, K., AueHko, B., EdimeHko, A.
(2024). AnroputMmmnnpoLeaypHOIireHepaLliiirpoBorokOHTEHTY 3agonomorotrpadis. Information Technology:
Computer Science, Software Engineering and Cyber Security, 3, 77-87, doi: https://doi.org/10.32782/
IT/2024-3-8

ANrOPUTMU NPOLEEAYPHOI FEHEPALII IFTPOBOIO KOHTEHTY
3 BUKOPUCTAHHAM PA®IB

Pospobka yHikanbHux ieposux cepedosuly 3 8UKOPUCMAaHHSM ansopummie Ha OCHO8I epaghosux Cmpykmyp
OGaHux ma npouedypHoi eeHepauii KoHmeHmMy 00380719€ Cymmego cKopomumu saumpamu npu 00HOYacHoMYy rideu-
WeHHi 3a2abHoi podyKmMusHoCmi KoMaHOu ma yCyHeHHi pu3uKy crmazHauii mpoyecy po3pobku.

Memoro po6omu € aHani3, po3pobka ma ei3yarnizauis pobomu anzopummie npouedypHoi 2eHepauii KOHMeHmy,
a MaKoX 8UBYEHHS MepcreKkmus ix nodasbuio2o 8UKOPUCMAaHHS y NPakmuyHit po3pobyi izposux npoekmis.

Haykoea Hosu3Ha rorisizae y sukopucmaHHi epacbie drisi npouedypHoi 2eHepauji izpogo2o KoHmeHmy. Lis mema 6yna
obpaHa y 38’43Ky 3 MUM, WO CIMBOPEHHS i2p08020 OMOYEHHsT Moxe Bymu OOHIer0 3 OCHOBHUX i Halbinbw pecypCoeMHUX
gumpam y ripoueci supobHuumea apu. lNpouedypHa seHepalisi KOHMEHMY MOXe 3MeHWUMU Ui aumpamu ma npuweuo-
wumu npouec po3pobku. [pakmu4HO HEMOXIIUBO nidpaxysamu, Ky KOHKDEMHO YacmuHy npodyKmueHOCMi KoMaHOU
ma 6i3Hec-8u200u npuHocUMb rpouedypHa eeHepauis, OCKinbKu bifbLuicmb iHHo8auil y uiti cghepi € KOMEPUIUHOK Maem-
Huueto izposux cmydil, 0OHaK ye 2080pUMb JTULWE PO MOXJIIUBOCMI ma repeesaau, ki Hece 8 cobi ueli nioxio.

Memodonozia 6asyembcs Ha Mosi npozpamysaHHsi The Python sk ocHogHOMY iHCMpyMeHmi 0711 8UBYEHHS
anesopummis, kUl eukopucmosysascsi 01151 po3pobKU an2opummis, cmeopeHHs 8isyanisauyili ma npuknadie eeb-
cepsepis 0151 06pobKuU OaHUX, 32eHeposaHuXx epaghamu.

BucHoeok: ri0 Yac po3pobku bynu susyeHi 8iOMIHHOCMI ma chifnbHi pucu 8 demarnsx peanizauii anzopummis,
a makox pesysibmamu eeHepauii KoHmeHmy. Takox 6yrno npodemMoHcmposaHo 8iOMIHHOCMI y 32eHepoBaHUX epa-
¢hax. Ha npuknadax eeb-cepaepis npoinocmposaHo nomerujas nodanbwo20 npakmu4YHo20 3acmocy8aHHs PO3po-
bneHux anzopummie. Pe3ynbmamu AocniOKeHHs MOXymb 6ymu sukopucmani po3pobHuUKamu ieposux cepedosuly
ma docniGHuUKkamu anzopummie 0515 NiG8UWEHHST echekmugHocmi 8UPOBHUYUX Npoyecie.

Knro4oei cnoea: rpouedypHa eeHepauisi, po3pobka i2op, echekmusHiCmb po3pobKuU, onmumizauis po3pobKu.

Introduction. Procedural content generation of game maps, dialogues and events (Togelius et
(PGC) is considered one of the tools for creating al., 2011). Thus, the content of the game world,
a unique player experience in projects of various the environment of the character is enriched and
scales. Minimizing the cost of game design devel- opportunities for dynamic adaptation to the user’s
opment, it allows you to automate the generation actions are created. The effective application of

78

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

PCC can compensate for shortcomings in design,
gameplay mechanics, etc., and make such a gam-
ing experience a special feature of the product
(Van Der Linden et al., 2013).

Previously, the limited computing power of sys-
tems forced developers to save on memory and
processor time, which prevented the use of this
tool. However, with the development of technol-
ogy, procedural generation has become not only
possible, but also desirable for creating large and
varied game universes.

In the context of traditional game design, where
game environments are hand-crafted by teams of
specialists, PGK offers an alternative approach
that allows for the generation of infinitely diverse
game scenarios and worlds. Using this approach
not only reduces the dependence on the creative
resources of the team and the efficiency of manual
labor, but also opens new horizons for innovation
in the industry. As a result, game implementation
becomes more accessible to developers of various
levels, while players gain access to inexhaustible
content.

This study attracts special attention because
it provides a unique opportunity to explore com-
plex algorithmic and mathematical principles in the
context of their practical application for creating
dynamic and exciting game content. Using graphs
as a basis for procedural generation allows mode-
ling complex structures and relationships, opening
new horizons for automating the creation of game
worlds, levels, storylines, and dynamic game
events. In addition, the PGK direction promotes
the development of new methods of optimization
and data analysis, as well as the application of
graph theory in non-standard fields, such as data
visualization and machine learning. This makes
the researched technology very promising from
both an academic and a practical point of view. In
light of the constant development of the industry,
its numerous innovations and the improvement of
the quality of the gaming experience, the effective
application of such algorithms can significantly
expand the boundaries of what is possible in the
development of game design

Statement of the problem. During the review
of the literature, several works were studied to
research issues related to procedural generation,
its features, characteristics and opportunities for
process optimization. To study procedural genera-
tion in general, its goals, capabilities and features,
the following works were considered. In fact, there
are not many scientific papers from which you can
get the latest and most relevant information, since
most technical open-source work takes place in
game studios where most do not share the source

79

code for analyzing algorithms. The first work that
gives a general understanding of algorithms is
«Procedural content generation for games: A sur-
vey», this material gave a general idea of the fea-
tures of algorithms and their possible impact on
development processes (Hendrikx et al., 2013).
Another work, «Procedural content generation:
Goals, challenges and actionable steps» allowed
us to delve deeper not only into the technical
details and challenges that a team that decides to
use generative approaches in development may
encounter, but also without the value that, with the
right approach, gives a tangible increase in the pro-
ductivity of the development team (Togelius et al.,
2013). «What is procedural content generation?
Mario on the borderline» gave a more thorough
technical overview of the use of procedural gen-
eration in conditions of limited resources, which
also gave insight into the possibilities of generating
game landscapes of relatively large sizes, which
is not possible in standard game design (Togelius
et al.,, 2011). The remaining works mentioned in
the work served as the technical and theoretical
basis for the development and demonstration of
algorithms. With their help, a strong and reliable
basis was obtained for the practical implementa-
tion of algorithms using the graph data structure.
Thereby, the purpose of this research is to ana-
lyze, develop and visualize the operation of pro-
cedural content generation algorithms, as well as
to study the prospects for their further use in the
practical development of game projects.

Methodology. For practical implementation,
the general purpose programming language
Python is used. It is chosen as one of the most
popular languages, which has a convenient infra-
structure with a large number of useful packages
that simplify the solution of tasks. However, any
application programming language can be used to
implement these algorithms.

The development of all algorithms within this
work will take place in several stages:
Demonstration of pseudocode.
Demonstration of working code in the cho-
sen programming language.

¢ Visualization of the algorithm.

This will give understanding which algorithm is
better to use for the needs of game designers.

To begin with, before the implementation of
more complex algorithms, it is possible to show an
easy version of the work of the library algorithm to
demonstrate the practical possibilities of genera-
tion and visualization. The program code is shown
in Figure 1, the results of the work on Figure 2.
Having a basic understanding of the operation of
some algorithms, as well as a visual demonstration

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

(num_nodes, num_edges):

3 (num_nodes) :
je (i)

s() < num_edges:
.randint(0, num_nodes
.randint(

node_b:
je(node_a, node_b)

node_a =
node_b =
if node_a !=

def visualize_graph(6):
pos = nx. ing_layout(6) # Location of
X w(6, pos, with_labels=Tr

Graph c
num_node of nodes
num_edges = 15 # number of edges
5 = n t 3ph(num_nodes, num_edges)

zation

1)

, num_nodes - 1)

ati nodes
, node_color="1lightblu

using the Fruchterman-R
', edge_color='g

Fig. 1. Program code for implementing the library algorithm
for graph generation and visualization

a) 5

b)

3

Fig. 2. The first result (a) and second result (b) of the work of the library algorithm

of the generated graph, that can help implement-
ing algorithms.

Results. In order to generate a pseudocode
(Figure 3) of the algorithm, we will generate the
main steps of its operation:

Graph initialization: We start with an empty
graph and an initial node located at the origin of
coordinates (0,0).

Setting Directions: Define possible move-
ments in the graph, which include movement to the
left, right, down and up.

Cycle for Random Wandering:

o Direction and Weight: At each iteration, we
randomly select one of the specified directions and
generate a random weight that affects the distance
of the next step.

o Calculation of the Position of the Next Node:
We determine the position of the next node using
the position of the current node, to which we add
the selected direction multiplied by the weight.

When the main steps are formed, we proceed
to the formation of the pseudocode for the imple-
mentation of the algorithm.

80

This is one of the simplest variants of the algo-
rithm, while the algorithm itself is quite simple.
However, it should be borne in mind that without
additional configuration, the result will be quite
simple for the structure of the game environment.

Next step is the implementation the algorithm
using the selected programming language Fig-
ure 4.

We will test the described algorithm and create
the generation results. For clarity, we will perform
two generation of Figure 5. According to the results
shown in the corresponding figures, it can be con-
cluded that the algorithm is suitable for non-de-
terministic game environments. That is, it can be
used as a basis for other algorithms, or as an addi-
tional step in the graph processing chain.

Now we practically implement the algorithm of
binary division of space. First, let's form the main
steps of the algorithm:

Initialization: the initial area to be divided is
selected.

Recursive division: the selected area is
divided into two parts using a straight line (or plane

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

Function random_walk(num_steps):
Initialize an empty graph G
Set the initial node as (0, 8) and add it to 6

Set directions as [(-1, @), (1, 8), (8, -1), (8, 1)] # Four possible moves: Left, Right, Down, Up

Loop from 1 to num_steps:
Choose a random direction from directions
Generate a random weight between 1 and 5

Compute next_node:
next_node_x = current_node_x + direction_x * weight
next_node_y = current_node_y + direction_y * weight
next_node = (next_node_x, next_node_y)

Add next_node to the araph G
Connect current_node to next_node with an edge with the computed weight

Update current_node to next_node

Return graph 6

Fig. 3. Drunkard’s Walk algorithm pseudocode

def random_walk(num_steps):
6 = nx.6raph()

current_node = (8, 8)
6.add_node (current_node)

directions = [(-1, @), (1, ©), (B, -1), (B, 1)] # Left, Right, Down, Up

for _ in range(num_steps):
move = random.choice(directions)
weight = random.randint(1, 5)
next_node = (current_node[8] + move{B] * weight, current_node[1] + move[1] * weight)
node (next_node)
dge(current_node, next_node, weight=weight)
_node = next_node

return 6

Number of steps
num_steps = 20
6 = random_walk(num_steps)

Visualization

plt.figure(figsize=(12, 8))

pos = {node: (node[®], node{1]) for node in 6.nodes()}

edges = G.edges(data=True)

nx.draw(6, pos, with_labels=False, node_color='lightblue', node_size=500, font_size=16, font_color='darkred')

plt.title("Algorithm result")
plt.show()

Fig. 4. Implementation of the algorithm in Python

A iE
- BT =1

a) ‘ b)

Fig. 5. The first result (a) and second result (b) of the Drunkard’s Walk algorithm

81

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

in 3D), which can pass vertically, horizontally or at
any angle, depending on the task and the selection
algorithm. This process continues recursively for
each of the newly created parts until given criteria
such as minimum part size are met.

Stopping the algorithm: the recursion stops
when each part reaches a certain minimum size or
when the number of recursive divisions reaches a
maximum limit.

We will describe the formed steps with the help
of pseudocode Figure 6.

The main steps have been formed, let's move on
to the software implementation using the selected
programming language. Since the implementation
turns out to be very voluminous — we will take it to
the applications. Here we will describe exactly how
the developed software part works:

e Room class — this class represents a room
with given coordinates (x, y), width and height. It

also calculates the center of the room, which is
used for further calculations.

e The «_init_» method initializes the room with
the given parameters and determines its center
(Fig. 7).

e The «split» method divides a room into two
smaller rooms (vertically or horizontally) based
on which is greater: width or height. The choice
of partitioning method depends on the aspect ratio
of the room and the number of allowed partitions
(max_splits) (Fig. 7).

e The «vertical_split» and «horizontal_split»
methods perform their own splitting. They choose
a position to break (not too close to the edges),
create new rooms and return them (Fig. 7).

e «create_roomsy function — this function recur-
sively divides the initial room into smaller ones
until the maximum number of rooms is reached or
until the possibility of division is exhausted. This

initinl_spece = dofine L_spac
BEF[initinl space, yiven oumber_af split

Fig. 6. Pseudocode for implementing the Binary Space Partitioning algorithm

Fig. 7. Functions from BSP implementation: --init--, split, vertical_split, horizontal_split

82

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

provides control over the number of rooms in the
final structure (Fig. 8).

e «build_graph» function — this function creates
a graph where each room is a node. Nodes are con-
nected by edges based on the distance between
room centers, but only until the number of connec-
tions per room exceeds the specified limit (max_
connections_per_room). This limits the degree of
connectivity between rooms, which can be useful
for creating more realistic room layouts (Fig. 9).

e «draw_graph» function — this function renders
a graph using the NetworkX graph drawing library.
It uses room positions to place nodes and shows
the connections between them (Fig. 10).

Figure 11 shows running and visualization of
the algorithm.

General execution flow: an initial room is cre-
ated, it is divided into smaller rooms using the

(start_room, min_size,

s _to_split = [(start_room,
s_to_split:
splits_le

s left >

ft =

room,

i¥ result:
left, right result
nodes_to_split.a

s_to_split.a

f current_room.width >=
rooms. 31 current

i{current _room)

AX_Sp

nodes

= current_room.split(splits

((left,

«create_rooms» function, After the division of
rooms is complete, a graph is created from these
rooms, the graph is visualized using the «draw_
graph» function. The results of the algorithm can
be seen in Figure 12.

From the obtained results, we can see that this
particular algorithm is more suitable for practical
problems, because it has the ability to fine-tune
parameters that allow you to obtain different, but
predictable results.

The practical application of graph generation
algorithms consists in the use of generated struc-
tures — as a basic representation of game envi-
ronments. However, simple visualization of the
generated graph is of no practical value for fur-
ther use. To obtain usable results, it is advisable
to implement a program interface (APl — Applica-
tion Programming Interface) that provides output

pax_splits):

1its))

to_split.pop()

left

splits_left
ght, splits_left
min_size and

room)

current_room.height >= min

Fig. 9. Functions from BSP implementation: build_graph

83

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

def draw_graph(G,

pos):
draw(B, pos, with_labels=False, node_size=3RA, node_color='lightblue’, edge_color='gray')

elworkx_edyes(6, pos, edge_color='gray’)

Fig. 10. The draw_graph function

initial_room = Room(®, B, 168, 108)
max_splits =
max_connections per_room

L
b |

rooms = create_rooms(initial_room, 10, max_splits)
G, pos = build_graph(rooms, max_connections_per_room)
draw_graph(G, pos)

Fig. 11. Running and visualization of the algorithm

a) b)

Fig. 12. The first result (a) and second result (b) of the BSP algorithm

data of the algorithm in a standardized format — for
example, JSON.

API defines a set of interaction rules between
software components, ensuring their compatibility
and efficient data exchange. To create it, without
complicating the basic code of the project, you
can use the Flask web framework. It is designed
for building simple web applications using the
Python language. This tool is minimalistic, modu-
lar and scalable. The structure of the Flask pro-
gram includes routing of URL requests, processing
of HTTP methods (GET, POST, PUT, DELETE). It
allows you to efficiently create RESTful APIs with
CRUD functionality (create, read, update, delete
data).

To begin with, let’'s create a simple server with
the GET method to retrieve data from the graph.
The implementation of the web server is shown in
Figure 13. Here we import the necessary modules
and then create a Flask instance. We leave the
Generate_graph function unchanged.

Next, we define the route /graph/<int:num_
nodes>/<int:num_edges> with the HTTP GET
method. In this function, we will generate a graph
using generate_graph. Then we convert it into

84

node-link format using nx.node_link_data and
return the result in JSON format using jsonify.

To run the program, execute the command
python simple_graph.py in the terminal. As a trace,
we get the JSON object of the graph by sending
a GET request to «http://localhost:5000/graph/<-
num_nodes>/<num_edges>», where <num_
nodes> and <num_edges> are replaced with the
desired numbers.

For example, a query for «http://localhost:5000/
graph/3/3» will return a graph JSON object with 3
nodes and 3 edges. The result of executing such a
request is shown in Figure 14.

In this implementation, the placement of objects
is not detailed, which opens perspectives for the
development of a web server adapted to the spe-
cific requirements of users.

Similar to this implementation of the algorithm,
other algorithms can be created to obtain similar
graph structures. The next example of the imple-
mentation of the API for receiving data will create
a server with a GET request to receive the results
of generation according to the BSP (Binary Space
Partitioning) algorithm. The implementation is
described Figure 15.

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

inltial

mar_splits = -

may_connections_per_roo
ronmns 13y splits
+ Do 1 aphiromes, max_connections_per_roos)
noded, ‘x'copos[node]iB], 'y': pes * node in G, nodes]
r t i } dge
. nodes, "edges': edges)

fylgraph_tata)

Fig. 13. Web server route to receive BSP generation results

i 2
2 directed™: Ffalse
=3 srach" iF
a Links" C
s 3
(=2 sSource @,
7 target 2
= Ey
= I
o} souxrcs"' a,
14 target" 1
1= T
15 i
q <3 sSource 1 .,
15 targ=t 2
16 z
1= I
15 multigraph”: false,
1o "nodes" - C
ZE i
21 id*™ Lo}
z2 T
o5 Iy
Za id™: 4
o6 5
27 id"™: =
oS z
zg]

Fig. 14. The result of the request to receive graph data

max_SpLits
ons_per_room
node node pos|nod pos{nodej{1 d pdes)
R " ' N ¢
9 | t dges v dges)
graph_data nod eg
paoh dat
ane 3
9. run{debug=True)

Fig. 15. Web server route to receive BSP generation results

In this example, we create a Flask server with graph using the create_rooms and build_graph
a single route /generate_graph. When executing functions. It then converts the graph to JSON
a request with this route, the server generates a format using list inclusions. Graph nodes are

85

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

represented as dictionaries with id, x, and y keys,
and edges are represented as dictionaries with
source, target, and weight keys. The result of the
generation is the edge and nodes arrays. «Edge»
array has objects of type { «source»: string, tar-
get: string, weight: number}. The «Node» array
has objects of type {«id»: string, x: float, y: float}.
We return the received graph data in JSON format
using the jsonify function from Flask.

Conclusions. In conclusion, among the main
vectors for further development of the project, opti-
mization for more complex and branched graph
structures for the purpose of detailed modeling of
the game world should be highlighted. Achieving
this goal will require improving algorithmic solu-
tions that provide greater flexibility in settings and
optimization for working with large and complex
graph data structures. In addition, the issue of
integration with game engines is critical, which will
optimize the development process for the specific
context of game engines and speed up overall
development cycles.

To successfully complete these tasks, it is
necessary to consider various optimization meth-
ods, such as the use of more efficient search and
data processing algorithms, as well as the use of

modern technologies that reduce computational
costs. Integration with game engines requires
close collaboration with the engine development
teams and a deep understanding of their archi-
tecture and capabilities. It is also important to pay
attention to user experience, developing intuitive
interfaces and tools, improving documentation and
providing training materials.

The support of the developer community plays a
key role in the successful development of the pro-
ject. An active and engaged community can signif-
icantly speed up the development process by facil-
itating the sharing of experiences, suggestions for
improvements, and collaborative problem solving.
Regular meetings, webinars and conferences dedi-
cated to discussing the current status of the project
and plans for the future will facilitate this process.

Thus, the successful development of the pro-
ject requires an integrated approach, including
optimization of graph structures, integration with
game engines, improvement of user experience
and active support of the developer community.
This is the only way to achieve your goals and
create an innovative product that can change the
approach to game development and modeling of
game worlds.

BIBLIOGRAPHY:
1. Xia F.,, Liu J., Nie H., Fu Y., Wan L. and Kong X. «Random Walks: A Review of Algorithms and
Applications» in IEEE Transactions on Emerging Topics in Computational Intelligence, April 2020, Volume 4,

No. 2, pp. 95-107, doi: 10.1109/TETCI.2019.2952908.

2. Fan X, Li B., Sisson S. The binary space partitioning-tree process. International Conference on Artificial
Intelligence and Statistics, March 2018, PMLR, pp. 1859-1867.
3. Ehrhardt G. The not-so-random Drunkard’s walk, Journal of Statistics Education, 2013, vol. 21, no. 2, doi:

10.1080/10691898.2013.11889679.

4. Hendrikx M., Meijer S., Van Der Velden, J., losup A. Procedural content generation for games: a survey,
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2013, vol. 9, no.

1, p. 1-22.

5. Koesnaedi A., Istiono W. Implementation drunkard’s walk algorithm to generate random level in roguelike
games. International Journal of Multidisciplinary Research and Publications, 2022, vol. 5, no. 2, p. 97-103.

6. Shaker N., Togelius J., Nelson M. J. Procedural content generation in games, 2016.

7. Togelius J., Kastbjerg E., Sched| D., Yannakakis G. N. What is procedural content generation? Mario on
the borderline. Proceedings of the 2nd international workshop on procedural content generation in games, June

2011, pp. 1-6.

8. Coth C. D. Binary space partitions: recent developments. Combinatorial and Computational Geometry,

2005, vol. 52, p. 525-552.

9. Van Der Linden R., Lopes R., Bidarra R. Procedural generation of dungeons. IEEE Transactions on
Computational Intelligence and Al in Games, 2013, vol. 6, no. 1, p. 78-89.

REFERENCES:

1. Xia, F., Liu, J., Nie, H., Fu, Y., Wan, L. and Kong, X. (2020). «kRandom Walks: A Review of Algorithms and
Applications» in IEEE Transactions on Emerging Topics in Computational Intelligence, April 2020, Volume 4,
No. 2, pp. 95-107, doi: 10.1109/TETCI.2019.2952908 [in English].

2. Fan, X., Li, B., & Sisson, S. (2018). The binary space partitioning-tree process. International Conference
on Atrtificial Intelligence and Statistics, March 2018, PMLR, pp. 1859-1867 [in English].

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

3. Ehrhardt, G. (2013). The not-so-random Drunkard’s walk, Journal of Statistics Education, vol. 21, no. 2,
doi: 10.1080/10691898.2013.11889679 [in English].

4. Hendrikx, M., Meijer, S., Van Der Velden, J., & losup, A. (2013). Procedural content generation for games:
a survey, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 9, no.
1, p. 1-22 [in English].

5. Koesnaedi, A., & Istiono, W. (2022). Implementation drunkard’s walk algorithm to generate random
level in roguelike games. International Journal of Multidisciplinary Research and Publications, vol. 5, no. 2,
p. 97-103. [in English].

6. Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural content generation in games [in English].

7. Togelius, J., Kastbjerg, E., Schedl, D., & Yannakakis, G. N. (2011). What is procedural content generation?
Mario on the borderline. Proceedings of the 2nd international workshop on procedural content generation in
games, June 2011, pp. 1-6 [in English].

8. Coth, C. D. (2005). Binary space partitions: recent developments. Combinatorial and Computational
Geometry, vol. 52, p. 525-552 [in English].

9. Van Der Linden, R., Lopes, R., & Bidarra, R. (2013). Procedural generation of dungeons. |[EEE
Transactions on Computational Intelligence and Al in Games, vol. 6, no. 1, p. 78-89 [in English].

87

