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RESULTS OF THE ANALYSIS OF THE EFFECTIVENESS
OF WIRELESS DATA EXCHANGE TECHNOLOGIES WHEN CREATING
INFORMATION SYSTEMS FOR AGRO-MONITORING

Relevance. The reliability of wireless networks is a critical aspect in modern infocommunication systems,
especially given their widespread use in a variety of industries, including agriculture, healthcare, transportation,
and industry. These networks must provide continuous and reliable communication, which is becoming increasingly
important in the context of the growing number of connected devices and increasing requirements for quality
of service (QoS). Reliability here includes the ability of a network to continue to function properly during and after
failures, as well as ensuring secure data transmission.

The main aim is to conduct a comparative analysis of several architectures of neural networks in order to
determine the most suitable for modeling the reliability of wireless networks. In the second part of the study, several
wireless communication standards will be simulated using the selected algorithm, which will allow for a deeper
analysis and draw conclusions about reliability.

The research object is the modern wireless communication standards and their effectiveness under
various application conditions. The research subject is methods and models of comparison of the performance
and characteristics of 5G, Wi-Fi, LTE, and Zigbee for different types of networks and applications.

Conclusions. The results emphasize that 5G is the most promising standard for applications requiring high data
transfer speeds and low latency. Wi-Fi remains a popular choice for local networks, but its performance decreases
over long distances and in environments with significant interference. LTE offers a good balance between coverage
area and performance, while Zigbee is the least performant but effective for low-speed and energy-efficient loT
applications. Overall, the research results confirm that the choice of wireless communication standard depends on
specific network requirements, including bandwidth needs, coverage area, latency, and energy efficiency.

Key words: wireless networks, reliability, neural networks, QoS, data transmission, network performance.
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PE3YNbTATU AHANI3Y EGEKTUBHOCTI BE3POTOBUX TEXHONOIX OEMIHY
OAHUMU NIQ YAC NOBYAOBU IHOOPMALIMHUX CUCTEM AFPOMOHITOPUHIY

AKkmyanbHicmb. HadiliHicmb 6e30pomosux Mepex € KpUMUYHO 8aXXIUBUM acrekmom y Cy4acHUX iHGbOKoMYy-
HiKauiliHUX cucmemax, ocobnueo 3 025150y Ha iX WUPOKE 3acmocy8aHHsl 8 PISHOMaHIMHUX 2asly3siX, 8KIIHYarqu
CinbcbKe 20¢no0apcmeon, 0XOPoHy 300p08’s, mpaHcropm ma npomucriosicme. Lli mepexi maroms 3abesneqyysamu
besnepepsHull i HadilIHUl 38’A30K, W0 cmae dedari 8aXuUGIlUM 8 yMo8ax 3pOCMaHHS Yucna MioKIYeHUX npu-
cmpoie ma nidsuweHHs1 aumoe 3o sikocmi obcry2osysaHHs (QoS). HadiliHicmb eknroyae 30amHicmb Mepexi npo-
doexysamu OyHKUIOHy8amu HasexHUM YUHOM i vac i ricrisi 36oig, a makox 3abesneqyeHHs1 be3neqyHoi nepedadi
0aHux.

Memoro po6omu € rposedeHHs1 MOPieHSINIbHO20 aHani3y KinbKox apximekmyp HelpOHHUX MepeXx 3adrisi 8U3Ha-
YeHHs Halibinbw npudamHoi dns modentogaHHs1 6e30pomosux mepex uiodo oyiHku ix HadiliHocmi. Takox y cmam-
mi nposedeHo docnidkeHHss Memodamu MOOEHB8aHHS KinlbKox cmaHdapmie 6e30pomoe8020 38’53Ky 3a A0MOMO20t0
0bpaHo20 aneopummy, Wo Ao380usI0 Nposecmu anubwul aHanis i 3pobumu 8UcHO8KU W0do HaditHocmi.

06’ekmom docnidxeHHs € cy4acHi cmaHOapmu 6e30pomoeo20 38’3Ky ma ix eqhbeKmueHICMb y Pi3HUX yMo8ax
3acmocyeaHHs. lTpedmemom AocnidxeHHs1 € MemoOu i MoOesi MopPieHSIHHSI MPOOYKMUBHOCMI ma xapakmepuc-
muk 5G, Wi-Fi, LTE ma Zigbee 0ns pi3HUX muriie Mepex i 3acmocysaHb.

BucHoeku: pesynbmamu MoOern8aHHs1 nidkpecorome, wo 5G € Halbinbw nepcrnekmusHUM cmaHd0apmom
0ns 0odamkie, W0 sumazarompb 8UCOKOI weudkocmi nepedayi GaHux i HU3bKOI 3ampumku. Wi-Fi 3anuwaemscs
nonynsapHuM gubopom Orisi 1oKanbHUX Mepex, ane (io2o MpodyKmueHiCmb 3HUXYEMbLCS Ha 8efuKux eidcmaHsix
i 8 ymoeax eesnukoi Kinbkocmi nepewkod. LTE nponoHye xopouwy 36anaHco8aHicmb MiX 30HOK MOKPUMMS ma rnpo-
dykmueHicmio, a Zigbee € HaliMeHwWw rpodyKmueHUM, rpome eheKmueHUM 07151 HU3bKOWBUOKICHUX | eHepaoeghek-
museHux 0odamekig loT. 3azanom, pedynbmamu docnidxeHHs nidmeepdxyoms, wo subip cmaHdapmy 6e3dpomo-
8020 38’A3Ky 3anexums 8i0 KOHKpemHux aumoe 00 Mepexi, 8KmoYarodu nompebu 8 nponyckHili 30amHocmi, 30Hi
fnokpummsi, 3ampumui ma eHepaoeheKmueHoCcMi.

Knro4oei cnoea: 6esdpomosi mepexi, HadiliHicmb, HelipoHHI mepexi, Q0S, nepedadya daHuX, NPOAYKMUBHICMb
MEpEXi.

The relevance of the scientific and applied Various methods and algorithms are used to
research task. Reliability of wireless networks is  analyze and improve the reliability of wireless net-
a critically important aspect of modern infocom-  works, with neural networks playing a significant
munication systems, especially considering their  role. Specifically, in studies of the reliability of neu-
widespread use across various sectors, including  ral networks used in critical systems, it has been
healthcare, transportation, and industry. These found that even the best models can be prone to
networks must provide continuous and reliable  errors during deployment. In such cases, methods
connectivity, which becomes increasingly impor-  like SelfChecker and Deeplinfer are employed to
tant as the number of connected devices grows  assess model reliability based on the analysis of
and the demands for quality of service (QoS) the model’s internal layers or conditions on input
increase. Reliability here includes the network’s  data, thereby enhancing the accuracy of reliability
ability to continue functioning properly during and  predictions (Pinconschi et al., 2024).
after failures, as well as ensuring the secure trans- Aim and objectives of the article. The main
mission of data (Sharma et al., 2023). aim of the article is to analyze and synthesize

109



Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 3, 2024

approaches to enhancing the reliability of wireless
networks by leveraging the latest advancements in
neural network technologies, ensuring stable and
secure operations in critical communication sys-
tems. To achieve the set aim, the following objec-
tives need to be met:

— conduct a critical analysis and logical gener-
alization of existing approaches to improving the
reliability of wireless infocommunication networks;

— identify and examine the most effective archi-
tectural solutions and algorithms for enhancing
network reliability, with a focus on neural networks;

— develop and evaluate structural models and
algorithms for assessing the reliability of wireless net-
works using selected neural network architectures;

— provide recommendations for future research
directions to advance the reliability of wireless
communication systems, particularly in critical
applications.

Comparative analysis of neural networks.
For the comparative analysis, four main neural
network architectures were selected: Multilayer
Perceptron (MLP), Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), and
Transformers. These models were chosen based
on their popularity in solving various tasks related
to prediction and classification, as well as their
potential suitability for analyzing the reliability of
wireless networks (Mufioz-Zavala et al., 2024).

Detail Compact Column

e sort_id B date_d_m_y = B time

Fig. 1.

The main criteria for selection were:

— performance: the model’s ability to provide
high accuracy in complex conditions, which is
important for reliability;

— noise resistance: the model’s ability to main-
tain effectiveness in the presence of noise in the
input data;

— computational complexity: an evaluation of
resource requirements for running the models,
especially in the context of real-time processing.

Architectures description:

— MLP (Multilayer Perceptron): a classic model
with full connectivity between layers, capable of
solving a wide range of tasks;

— CNN (Convolutional Neural Network): used
for processing data with spatial dependencies,
particularly effective for image analysis;

— RNN (Recurrent Neural Network): specializes
in processing sequential data, such as text or time
series;

— transformers: a modern architecture that has
shown high efficiency in tasks where processing
long sequences and complex contexts is impor-
tant.

For comparing the selected neural networks,
the following metrics were used:

— accuracy: the overall proportion of correct
predictions, allowing the evaluation of the model’s
effectiveness;

@e sensor_id & sensor_ty... =

Dataset for further analysis (retrieved from kaggle.com/datasets/halimedogan/

wireless-sensor-network-data/data)
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— recall: reflects the model’s ability to identify all
actual positive cases;

— F1-score: the harmonic mean between accu-
racy and recall, allowing the assessment of bal-
ance between them.

To obtain quantitative and qualitative evalua-
tions presented in Table 1, a series of experiments
was conducted on synthetic and real data. Initially,
datasets were collected and prepared that reflected
various aspects of wireless networks, including
traffic data, signal level, latency, and errors. Syn-
thetic data were generated by simulating different
scenarios of wireless networks, allowing for con-
trolled parameters and the introduction of targeted
noise (Zhu et al., 2023). Real data were obtained
from existing datasets containing information on
real operational conditions and potential failures.

The models were trained on training datasets
with subsequent validation on test datasets that
included cases with varying levels of noise. To
increase the accuracy and stability of the results,
the k-fold cross-validation method was used. Each
model underwent several cycles of training and
testing with different data distributions, reducing
the impact of random factors (Wang et al., 2023).

Various public datasets collected from reputa-
ble sources were used for modeling and analyzing
neural networks in the context of wireless network
reliability research. The training and testing data-
sets were selected considering the specifics of
the network scenarios under study, ensuring high
modeling quality and relevance of the obtained
results. In particular, the following sources were
used to train the models:

1. Wireless Network Traffic Data (UCI Machine
Learning Repository) is a dataset containing infor-
mation about traffic in wireless networks. This
dataset allows for modeling various aspects of
network operation, including signal level analysis,
latency, and errors. Using this dataset provided the
opportunity to test the models under real wireless
network operating conditions.

2. CICIDS 2017 Dataset (Canadian Institute for
Cybersecurity) is a dataset for anomaly detection
in networks, containing detailed information about
various types of network traffic, including both
normal traffic and traffic related to attacks. This
dataset was used to evaluate the models’ ability to
detect anomalies in complex conditions.

3. IEEE Dataport Wireless Network Data is a
platform providing access to datasets collected in
real wireless networks. Choosing data from this
platform ensured modeling and testing of neural
networks under real conditions with varying lev-
els of noise and other factors affecting network
reliability.

The training data underwent preprocessing to
ensure the correctness of the modeling:

1. Data Collection and Preprocessing: real data
were collected from public sources such as UCI,
CIC, and IEEE Dataport. The data were cleaned of
potential artifacts and anomalies that could nega-
tively impact the modeling results.

2. Statistical Characteristics Analysis: for each
dataset, an assessment of the main statistical char-
acteristics, such as mean, variance, median, and
range, was conducted. This allowed for the evalu-
ation of possible correlations between parameters
and ensured high-quality model training.

3. Creation of Synthetic Data: to model various
scenarios of wireless network operation, synthetic
data were generated, including variations in noise
levels and other network characteristics. This pro-
vided the opportunity to test the models in different
conditions and evaluate their noise resistance.

The data preparation approach ensured high
accuracy, stability, and realism of the modeling
results, as confirmed in the presented results table
(Table 1).

Based on the conducted analysis, transform-
ers were chosen as the most suitable architecture
for further research on the reliability of wireless
networks. They demonstrated the highest results
across all key metrics, indicating their ability to

Table 1

Comparison of neural network architectures by basic metrics

Neural Network Noise Computational
Architecture Accuracy Recall F1-Score Resistance Complexity
ForeantronyYer 85% 82% 83% Medium Low
Nowral et 88% 85% 86.5% High High
Notwory_ront Neural 84% 80% 82% Medium Medium
Transformer 92% 89% 90.5% High High
Meroeptrom " 85% 82% 83% Medium Low
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effectively handle the tasks presented in this study
(Rafique et al., 2024).

The algorithm for using transformers in this
research consists of several key stages as shown
in Fig. 2.

Data preparation and processing

e

Sequence modeling

e

Classification and forecasting

e

Evaluation of results

e

Graphic presentation of results

J

Mechanism of self-attention

Fig. 2. The algorithm for using transformers

Thus, transformers will be used for time series
analysis and reliability prediction of wireless net-
works, enabling the early detection of potential
issues and the prevention of network failures.

Comparative modeling of wireless info-
communication standards. For this study, four
wireless communication standards were selected:
Wi-Fi, LTE, 5G, and Zigbee. These standards were
chosen based on their relevance in modern wire-
less networks and their widespread application in
various fields (Naidu et al., 2019).

— Wi-Fi: a standard for local area networks
(LAN) that provides high data transmission speeds
over relatively short distances. It is used in many
consumer and industrial applications;

— LTE: a mobile communication standard that
offers high bandwidth and serves as the founda-
tion for modern cellular networks. It provides broad
coverage and supports high mobility;

— 5G: a mobile communication standard that
promises to significantly increase data transmis-
sion speeds, reduce latency, and improve connec-
tion reliability. 5G also supports a massive number
of loT connections (Alsabah et al., 2021);

— Zigbee: a standard designed for low-speed
wireless networks with low power consumption,

112

often used in IoT, smart homes, and industrial
automation.

The standards were selected considering vari-
ous aspects of their use and technological capabil-
ities, allowing for a comprehensive study of relia-
bility (Shilpa et al., 2022).

The modeling was conducted using the NS-3
simulation environment, a standard for network
modeling. The main tools were Python for script-
ing and TensorFlow for integrating the transformer
neural network, which was chosen in the previous
stage of the study.

The study used real datasets on network traf-
fic obtained from various sources, such as public
databases like Kaggle and IEEE DataPort. The
main simulation parameters included setting up
network topology, configuring communication
channels, and parameters for interference and
network load (Shuaib et al., 2006).

Experiment stages:

1. Network topology creation: separate net-
work scenarios were configured for each wireless
communication standard (Wi-Fi, LTE, 5G, Zigbee).
Network topologies reflecting real-world usage
conditions were created:

— Wi-Fi: a local network with multiple access
points (APs) and client devices, modeling an envi-
ronment similar to an office or home;

— LTE and 5G: mobile communication scenar-
ios with base stations and moving subscribers.
These models reflect typical conditions of operator
networks with varying numbers of users and traffic;

— Zigbee: a network consisting of sensor nodes,
with low bandwidth and low power consumption,
ideally suited for smart homes or loT systems.

2. Communication channel configuration: the
communication channel parameters were con-
figured, such as frequency range, channel width,
transmitter power, and interference level. Charac-
teristic parameters corresponding to the specifica-
tions of each standard were used.

3. Traffic and load modeling: according to typi-
cal usage scenarios, characteristic types of traffic
were modeled for each standard:

— Wi-Fi: high-speed internet traffic, streaming
video, file transfer;

— LTE and 5G: high levels of mobile traffic with
an emphasis on latency and bandwidth;

— Zigbee: low-speed sensor data traffic, simu-
lating smart lighting systems or temperature sen-
sors.

4. Neural network integration: a transformer
neural network implemented on TensorFlow was
used for analyzing and predicting network behav-
ior. Its integration into NS-3 enabled predictions
based on real data, significantly improving the
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accuracy of the modeling and allowing for the con-
sideration of nonlinear dependencies in network
processes.

5. Results evaluation: the key performance
parameters, such as average latency, bandwidth,
packet loss rate, and power consumption, were
assessed for each standard. These results were
visualized as graphs, allowing for a comparison of
the efficiency of different standards under various
conditions (Raza et al., 2017).

Simulation results and parameter comparison
are shown in Fig. 3 and Table 2.

Key evaluation parameters:

1. Average data transfer speed (Mbps):

— measurement: the average bandwidth was
measured for each standard based on the trans-
mission of large amounts of data under various
conditions. Network load was simulated, includ-
ing different types of traffic (e.g., streaming video,
large files, sensor data for loT);

— Wi-Fi: measured under moderate load and at
distances up to 30 meters;

— LTE: measured in a mobile environment with
multiple subscribers over a large coverage area;

— 5G: measured in densely urbanized areas
with high-speed requirements;

— Zigbee: measured under low transmission
power conditions, typical for loT sensor networks.

2. Average latency (ms):

— measurement: latency was measured for
data packets of various sizes in scenarios simu-
lating real-world technology use. The latency was
assessed based on the average time it takes for
packets to travel from the source to the receiver;

— Wi-Fi: latency was measured under normal
and increased network load;

— LTE: latency was evaluated in a mobile envi-
ronment with subscriber movement;

— 5G: latency was measured in high-density
device environments with stringent latency require-
ments (e.g., for VR/AR applications);

— Zigbee: latency was considered under low-
power consumption conditions and frequent inter-
ference.

3. Packet loss (%):

— Measurement: packet loss was measured in
each environment to assess the network’s resil-
ience to interference and overload. Scenarios with
varying traffic intensity and the number of con-
nected devices were used;

— Wi-Fi: stability was analyzed as the number of
connected devices and distance increased;

— LTE: packet loss was evaluated in conditions
of moving subscribers and high user density;

— 5G: packet loss was evaluated in high-density
data transmission environments using different
frequency bands;

— Zigbee: losses were analyzed under low
bandwidth and energy-saving operating modes.

4. Interference resilience:

— measurement: this parameter was assessed
based on simulations of the impact of different
types of interference on network performance.
Each scenario used models of radio frequency
interference, multipath effects, and interference
from other devices;

— Wi-Fi: resilience to radio frequency interfer-
ence in multi-channel environments was consid-
ered,

— LTE: the network’s ability to operate in over-
lapping base station coverage areas was ana-
lyzed;

—5G: resilience to interference in new frequency
bands, including millimeter waves, was evaluated;

— Zigbee: resilience in environments with sig-
nificant low-frequency interference was assessed.

56 Zighoe

Wirslecs Standards

Fig. 3. Comparison of latency and throughput across wireless standards
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Table 2
Main simulation parameters
Parameter Wi-Fi LTE 5G Zigbee
Bandwidth 20 MHz 1.4-20 MHz 100 MHz 2.4 GHz
Maximum Speed Up to 600 Mbps | Up to 300 Mbps Up to 10 Gbps Up to 250 kbps
Coverage Area Upto 100 m Up to 10 km Up to 20 km Upto 100 m
Latency ~1-10 ms ~20-30 ms ~1-2 ms ~30 ms
Table 3
Comparison of standard performance
Standard A"erg"gge%a("ﬁgg’)‘s'fer A"era%;'s-f‘e““y Packet Loss (%) "gggﬁ;"c‘f
Wi-Fi 150 5 2 Medium
LTE 100 25 1 High
5G 1000 1 0.5 High
Zigbee 0.2 30 5 Low

Simulation results:

— Wi-Fi demonstrated high data transfer speeds
over short distances, but its reliability decreased
with increasing distance and interference;

— LTE showed stable performance over long
distances, but its data transfer speed was lower
compared to Wi-Fi and 5G;

— 5G exhibited the highest data transfer speeds
and low latency, making it the most promising
standard for future applications requiring high reli-
ability (Al-Fugaha et al, 2015);

—Zigbee was the least performant but its energy
efficiency and ease of configuration make it attrac-
tive for low-speed loT applications.

Priority directions for further research.
Based on the analysis and formulation of key
requirements, the next steps involve addressing
three crucial tasks:

1. Investigate methods to enhance 5G network
performance in specialized environments, such
as urban areas with high interference and remote
rural areas, to ensure consistent high-speed data
transfer and low latency.

2. Explore advanced technologies and algo-
rithms to extend the effective range of Wi-Fi

networks and mitigate performance degradation in
environments with significant interference.

3. Develop strategies to optimize LTE networks,
focusing on maximizing coverage while maintain-
ing high performance, particularly in transitioning
environments between urban and rural settings.

4. Study the potential for combining different
wireless communication standards, such as 5G,
Wi-Fi, LTE, and Zigbee, to create hybrid networks
that can dynamically adapt to varying network
requirements and conditions.

Conclusions. The results emphasize that
5G is the most promising standard for applica-
tions requiring high data transfer speeds and low
latency. Wi-Fi remains a popular choice for local
networks, but its performance decreases over long
distances and in environments with significant
interference. LTE offers a good balance between
coverage area and performance, while Zigbee is
the least performant but effective for low-speed
and energy-efficient loT applications. Overall, the
research results confirm that the choice of wire-
less communication standard depends on specific
network requirements, including bandwidth needs,
coverage area, latency, and energy efficiency.
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