Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

UDC 004.056
DOI https://doi.org/10.32782/1T/2025-1-17

Borys KUZIKOV

Candidate of Technical Sciences, Associate Professor at the Department of Computer Science, Sumy State
University, 114, Kharkivska Str., Sumy, Ukraine, 40007

ORCID: 0000-0002-9511-5665

Scopus Author ID: 55653809800

Pavilo TYTOV

Postgraduate Student at the Department of Computer Science, Sumy State University, 114, Kharkivska Str.,
Sumy, Ukraine, 40007

ORCID: 0009-0003-6911-5463

Oksana SHOVKOPLIAS

Candidate of Physical and Mathematical Sciences, Associate Professor at the Department of Computer
Science, Sumy State University, 114, Kharkivska Str., Sumy, Ukraine, 40007

ORCID: 0000-0002-4596-2524

Scopus Author ID: 55647364100

Tetiana LAVRYK

Candidate of Pedagogical Sciences, Senior Lecturer at the Department of Cybersecurity, Sumy State University,
Sumy State University, 114, Kharkivska Str., Sumy, Ukraine, 40007

ORCID: 0000-0002-7144-7059

Scopus Author ID: 55674106600

Vitalii KOVAL

Candidate of Physical and Mathematical Sciences, Senior Lecturer at the Department of Cybersecurity, Sumy
State University, Sumy State University, 114, Kharkivska Str., Sumy, Ukraine, 40007

ORCID: 0000-0002-1593-5605

Scopus Author ID: 57204958670

Svitlana KUZIKOVA

Doctor of Psychological Sciences, Professor, Head of the Department of Psychology, Sumy State Pedagogical
University named after A. S. Makarenko, 87, Romenska Str., Sumy, Ukraine, 40002

ORCID: 0000-0003-2574-9985

Scopus Author ID: 57207304002

To cite this article: Kuzikov, B., Tytov, P., Shovkoplias, O., Lavryk, T., Koval, V., Kuzikova, S. (2025).
Vyiavlennia ta zapobihannia atakam iz vykorystanniam tekhnik maskuvannia veb-dostupnosti [Detection
and prevention of accessibility cloaking attacks]. Information Technology: Computer Science, Software
Engineering and Cyber Security, 124—135, doi: https://doi.org/10.32782/1T/2025-1-17

DETECTION AND PREVENTION OF ACCESSIBILITY CLOAKING ATTACKS

Digital environments enable greater integration of people with disabilities into economic and social life, supported
by legislative accessibility requirements. However, this progress creates new cybersecurity vulnerabilities, particularly
for assistive technology users.

Objective. The objective of our study was to identify and analyze potential attack vectors associated with the
unethical use of accessibility technologies and to develop methods for their detection and prevention, with specific
focus on accessibility cloaking techniques.

Methods. We conducted an analysis of popular assistive browser extensions and their detection methods,
implemented proof-of-concept accessibility cloaking techniques using HTML and CSS, and evaluated the effectiveness
of current automated testing tools in detecting these manipulations. Based on identified vulnerabilities, we developed
a CLI application using AXE-Core for automated detection of accessibility cloaking markers.

Results. Our analysis revealed multiple HTML/CSS-based techniques that create different experiences
for users with and without assistive technologies, enabling malicious content to be hidden from regular users.

124

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

While these techniques violate multiple WCAG success criteria, current automated testing tools (Wave, Axe,
Lighthouse) largely failed to detect such manipulations. Our proof-of-concept detection tool, based on an agent
architecture approach, successfully identified these accessibility cloaking techniques.

Conclusion. Ensuring web resource accessibility without compromising security requires a comprehensive
approach including regular security audits, additional verification of content displaying differently for different user
groups, developer training, and automated detection tools. Our findings emphasize that accessibility’s purpose
is to make content equally accessible to all users, not to create separate or hidden experiences that can be exploited
for malicious purposes.

Key words: accessibility, phishing, cyber security, sustainable development, digital inclusion, web equality,
assistive technologies, inclusive design.

Bopuc Ky3sikoe

kaHOuOam mexHiYHUX Hayk, douyeHm kaghedpu KoM 'tomepHUX Hayk, Cymcbkuli depxasHul yHieepcumem,
syn. Xapkiecbka, 144, m. Cymu, YkpaiHa, 40007

ORCID: 0000-0002-9511-5665

Scopus Author ID: 55653809800

lMaeno Tumoe

acnipaHm kagheOpu Komm'romepHuUx Hayk, Cymcbkuli OepxasHuli yHieepcumem, 8yn. Xapkiecbka, 144,
m. Cymu, YkpaiHa, 40007

ORCID: 0009-0003-6911-5463

OkcaHa LLIOBKOIJISAC

KkaHOuOam bisuko-mamemamu4HUX Hayk, doueHm kaghedpu kKomm'romepHux Hayk, Cymcbkuli OepxasHuli
yHieepcumem, 8yn. Xapkiecbka, 144, m. Cymu, YkpaiHa, 40007

ORCID: 0000-0002-4596-2524

Scopus Author ID: 55647364100

TemsiHa Jlaepuk

kaHOuOam nedazoeidHuUX HayK, cmapwuli euknadady kaghedpu kibepbesneku, Cymcbkul OepxasHuli
yHieepcumem, 8yn. Xapkiecbka, 144, m. Cymu, YkpaiHa, 40007

ORCID: 0000-0002-7144-7059

Scopus Author ID: 55674106600

Bimaniii Koeanb

KkaHOudam ¢hisuko-mamemamu4HUX HayK, cmapuwuli suknadad kaghedpu kibepbesneku, Cymcbkuli OepxxasHuUl
yHieepcumem, 8yn. Xapkiecbka, 144, m. Cymu, YkpaiHa, 40007

ORCID: 0000-0002-1593-5605

Scopus Author ID: 57204958670

CeimnaHa Ky3ikoea

O00KMOp rcuxosnoeiyHuUX Hayk, npogecop, 3asidysay kaghedpu ncuxonoaii, Cymcbkuli depxxkasHuli nedazoidHuli
yHieepcumem imeHi A.C. Makaperka, PomeHcbka, 87, m. Cymu, YkpaiHa, 40002

ORCID: 0000-0003-2574-9985

Scopus Author ID: 57207304002

BiobniorpacpiuHnm onuc cratri: Kysikos, b., Tutos, I1., Woskonnsac, O., JlasTpuk, T., Kosanb, B.,
KysikoBa C. (2025). BusBneHHs Ta 3anobiraHHa atakam i3 BMKOPUCTAHHAM TEXHiK MackyBaHHs BeO-
poctynHocTi. Information Technology: Computer Science, Software Engineering and Cyber Security,
124-135, doi: https://doi.org/10.32782/1T/2025-1-17

BUABJIEHHA TA 3ANOBIFTAHHA ATAKAM 13 BUKOPUCTAHHAM TEXHIK
MACKYBAHHA BEB-AOCTYNHOCTI

Lucpposi cepedosuwya 3abesnedyroms wupwy iHmezpauito ocib 3 iHeanioHicmio 8 eKoOHOMiYHe ma coujaribHe
xumms, wWo niompumyemscsi 3akoHodagyumu sumoeamu 0o docmyrnHocmi. OOHak yel npouyec cmeoproe Ho8i
BUKIUKU y cehepi Kibepbe3reku, 0cobniugo 0r1si Kopucmysadie 00NOMKHUX MeXHO02il.

125

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

Memoto Hawoezo OocnioxeHHs1 6yro iOeHmucbikygamu ma npoaHasnisysamu rnomeHUyitHi 8eKmopu amak,
ro8’a3aHi 3 HeemMuUYHUM 8UKOPUCMAaHHSIM MexHOos102iti 0CMYNHOCMI, @ Makox po3pobumu mMemoodu ix 8UsIBNEHHS
ma 3arnobieaHHs1. OCHOBHUM (hOKYCOM cmammi € MeXHIKU, Uj0 3aCHOBaHI MpUX08y8aHHi YU CrlIomMeOoPeHHI CMOPIHKU
i3 8UKOpucmaHHsaM 3acobie nidsuuweHHs docmynHocmi 8e6CMOPIHOK.

Memodu. [posedeHo aHari3 rnornynspHuUx bpay3epHux po3wupeHs 0515 3abe3neyeHHs1 docmynHocmi ma Mmemodie
IX susieneHHs, peanizoeaHo proof-of-concept npuknadu mMexHiK fpuxosysaHHsi docmyrnHocmi 3 8UKOPUCMAaHHSIM
HTML ma CSS, ma oyjHHeHO eghekmugHicmb Hasi8HUX agmomMamu308aHUX iHCIMPYMeHMi8 Mecmy8aHHs y 8USIBNEHHI
makux maHinynsauit. Ha ocHoei susierieHux epasnusocmeti po3pobneHo CLI-0o0amok 3 sukopucmarHsim AXE-Core
0ns asmomamu308aH020 8USIBIIEHHST MapKepie rMpuxosysaHHsi 0CMYymHOCM.

Pe3ynbmamu. Anarnis susigus HUsky HTML/CSS-6a3o08aHux mexHik, siKi Cmeoproroms pisHe npedcmasieHHs
KoHmeHmy 0ns Kopucmysadig 3 O0MOMIKHUMU mexHoo2isMu ma 6e3 Hux, 003805104U rpuxosysamu wkidnueud
KOHmMeHm 6i0 38uyaliHuX Kopucmyeadie. Xo4a ui mexHiku ropywyroms HU3Ky kpumepiig ycriwHocmi WCAG,
rnomoy4Hi asmomamu308aHi iHcmpymeHmu mecmysaHHs (Wave, Axe, Lighthouse) 30ebinbwio20o He 3moanu sussumu
maki maHinynsyii. CmeopeHo iHCmMpyMeHm 6USIBNEHHS, 3aCHO8aHUU Ha ac2eHMHIlU apXimekmypi, wo YycrilHO
i0eHmueikysas ui mexHiku rnpuxosysaHHs1 d0CMynHOCMI.

BucHoeku. 3abesneyeHHs docmynHocmi eeb-pecypcie 6e3 komnpomemauii be3neku sumazae KOMIIEKCHO20
nioxoly, wo ekmoyae peaynspHi ayoumu 6esneku, dodamkosy repesipky KoHmeHmy, skul eidobpaxaembcs
no-pi3HoMy Oris pi3HUX 2pyn Kopucmyeadig, Hae4aHHsi PO3POBHUKIE ma asmomMamu3oeaHi [HCmpyMeHmu
susienieHHs1. PekomeHdauii nidkpecnoroms, wo mema 0ocmynHOCMIi — 3p0bumu KOHmMeHm 00HaKkogo G0CMYymHUM
01151 8CiX Kopucmysauie, a He cmeoprogamu 8idokpemeHi abo rpuxosaHi e3aemo0ii, IKi MOXymb 6ymu eUKopucmaHi
3i wkidnueumu Hamipamu.

Knrouosi cnosa: docmyniHicms, hiluuHe, Kibepbesneka, cmaruli po3sumok, Yyugposa iHKIH3is, pisHoNpasHicme
y yughposomy cepedosuli, QONOMiXKHI MexHonoeail, iHKmr3usHUl du3alH.

1. Introduction digital environment. However, improper use of
1.1. Motivation. Accessibility, particularly accessibility technologies can lead to serious
web accessibility, is mandated by many modern cybersecurity vulnerabilities, as malicious actors
strategies and legislative acts. In Ukraine, the Law can exploit these tools to gain unauthorized
‘On Amendments to Certain Legislative Acts of system access (Jang et al., 2014; Lei et al., 2023),
Ukraine Regarding Ensuring Access of Persons manipulate data, or obtain confidential information.
with Special Educational Needs to Educational Thus, a contradiction has emerged between
Services’ (Law of Ukraine Ne 2541-VIIl, 2018) insufficient awareness of accessible content
is in effect; the European Union has adopted creation practices, implementation of targeted web
Directive (EU) 2016/2102 on the accessibility of accessibility policies, and the growing number
websites and mobile applications of public sector of people requiring more accessible services.
bodies (Directive (EU) 2016/2102, 2016). Several This contradiction can be exploited by attackers
standards exist in this field, such as Section 508 targeting this vulnerable user group.
(Section 508 of the Rehabilitation Act, 1973) and It is important to note that this paper focuses
EN 301 549 (ETSI EN 301 549, 2021). However, solely on web environment security, not mobile
the Web Content Accessibility Guidelines applications or other platforms. We concentrate
(WCAG) (ISO/IEC 40500, 2012) remains the on specific challenges and threats that arise in
most widespread and comprehensive standard. the context of web accessibility. The research
Unfortunately, research indicates that educational = examines attacks where (under insufficient control)
resources’ compliance with these standards users of specific website accessibility tools see
remains relatively low (Alim, 2021; Akgul, 2020; different content than other users. The practice of
Ismail & Kuppusamy, 2019). providing different content to various target groups
The low level of educational resources’ without stating the purpose of the change can be
compliance with WCAG requirements is primarily unified under the term «accessibility cloaking».
due to limited awareness and lack of continuous This technique is hazardous because users of
monitoring. Currently, there are several tools, accessibility tools often trust specific interfaces or
such as AXE (Deque, 2025) and WAVE (WebAIM, content customized for them, thus becoming more
2025), capable of automatically detecting up to vulnerable to such manipulations.
5-7 % of WCAG non-compliance issues (Deque, 1.2. Related Works. Using built-in accessibility
n.d.). These tools are available both commercially = featuresasanattackvectorisoneresearchdirection.
and free of charge, so pricing is not a limiting factor. ~ Jang (Jang et al., 2014), pioneer the research of
Website accessibility is a crucial aspect of using accessibility APIs in Windows, Android, and
the modern internet. Ensuring equal access to Mac OS operating systems as a means of security
information for all users, including those with perimeter violation. Continuing this research, Lei
visual impairments, is key to creating an inclusive etal. (2023) revealed a vulnerability in the password

126

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

suggestion mechanism on the Android platform.
Yonas Leguesse et al. (2020) demonstrated
the possibility of private data disclosure. These
researchers examine specific mechanisms at the
operating system level. Such attacks are possible
regardless of whether the user utilizes assistive
technologies. Protection against these attacks is
only possible at the operating system level itself.
Researchers Renaud and Coles-Kemp (2022),
and Wang (2017) discuss attacks using assistive
tools, considering them primarily from ethical and
sociocultural perspectives.

Research in this area primarily focus on
the trade-off between security, usability, and
accessibility. Mehralian et al. (2022), in their study
address the problem of excessive accessibility in
mobile applications. They propose an automated
method for detecting and analyzing elements
that may be too accessible, potentially creating
security risks for users. This study emphasizes
the importance of balancing accessibility and
security in mobile application development. Goo et
al., in their work ‘Preserving Privacy in Assistive
Technologies’ (Goo et al., 2009), investigate the
problem of maintaining confidentiality when using
assistive technologies. They examine methods
that ensure privacy for users with disabilities while
providing necessary assistance. This research is
crucial for understanding the balance between
accessibility and personal data protection.

When addressing content substitution issues,
researchers use terminology such as “content
spoofing” (Jang et al., 2014), “adaptive phishing”,
“contextual deception” (Renaud & Coles-Kemp,
2022), “content manipulation” (Lei et al., 2023;
Renaud & Coles-Kemp, 2022), “accessibility
abuse”, “phishing via accessibility” (Lei et al.,
2023), “overlay attacks”, or “content injection”
(Leguesse et al., 2020). Our research subject
involves displaying special content for a vulnerable

category without indicating the ultimate purpose of
such substitution (UAC bypass, phishing, etc.).
Therefore, we propose using the term “accessibility
cloaking” to describe this phenomenon more
precisely.

2. Methods

The term “accessibility cloaking” describes
techniques that can be used both for legitimate
accessibility purposes and for potential abuse.
These techniques enable the creation of different
experiences for different user groups, particularly
for screen reader users versus sighted users.
One standard method involves using CSS to hide
certain content from visual users while keeping
it accessible to screen readers. Bohman and
Anderson (2005) note that this approach can
resolve conflicts in web development by ensuring
important information remains accessible to those
who need it without compromising the visual layout
for other users.

However, these same techniques can be
exploited by malicious actors to create targeted
attacks on vulnerable user categories. It's
important to note that there is usually no prior
information about whether a specific user belongs
to a vulnerable category. Therefore, the first step
in understanding potential accessibility cloaking
threats is to study methods for detecting and
identifying potential targets of such attacks.

2.1. Targeting Methods. Methods for
categorizing users into the target group can be
divided into direct and indirect. Direct evidence
includes active assistive plugins or the use of
specialized browsers. Specialized browsers
include text-only browsers such as WebblE
(WebblE Web Browser, n.d.) and Lynx (Lynx
Information, 2024), though they have limited
usage. Users tend to prefer specialized plugins
for mainstream browsers. The table 1 presents the
most widespread assistive extensions for Chrome

Table 1

The most popular assistive extensions

Title The number of installations Augmentation
Chrome Firefox of the page
Use Immersive Reader on Websites 1 000 000 - No
High Contrast 400 000 1007 Yes
Color Enhancer 200 000 - Yes
OpenDyslexic 400 000 - Yes
Speechify Text to Speech Voice Reader 1 000 000 - Yes
Read Aloud: A Text to Speech Voice Reader 5000 000 175 238 Yes
Vimium 500 000 41 386 No
NaturalReader — Al Text to Speech 900 000 - Yes
Voice In 500 000 - Yes
CrxMouse: Mouse Gestures 700 000 - Yes
Zoom Page WE 10 000 28 111 Yes

127

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

and Firefox. The table was compiled by searching
keywords in extension names and descriptions,
analyzing collections of popular extensions, and
and exploring related extensions suggested by
browser stores. The plugins can be found by name
in the official browser stores (Add-ons for Firefox,
n.d.; Chrome Web Store, 2025). Plugins are
ranked according to download statistics provided
by the respective stores.

Plugin usage can be detected through user-
agent strings and plugin APls. However, none of
the listed plugins exposed their presence through
these methods. Instead, plugins made changes
to pages (special classes, elements, iframes) that
can uniquely identify their presence. Therefore,
the most effective way to identify users from the
target category is to search for specific elements
and attributes on the page.

Beyond these, there are several indirect
methods to detect the presence of special
accessibility tools that users might utilize for
website interaction. These methods are based
on analyzing user behavior and specific browser
or operating system settings. While none of these
methods alone is sufficient for accurately detecting
assistive technology usage, their combination can
provide a more complete picture. First, we should
highlight two methods employed in “passive”
mode — on the server side, which cannot be
detected by user privacy protection tools.

Specialfonts. Using fonts such as OpenDyslexic,
APHont, Atkinson Hyperlegible, Dyslexie, Lexie
Readable, and Tiresias may indicate adaptation
for users with special needs. An element can be
created with font preferences from the specified
list. The lowest priority is given to a server-loaded
font. A request for such a font would indicate the
absence of installed fonts from the control list.

Animation state detection. Users with certain
cognitive disorders commonly disable animations
on web pages. The detection of disabled animation
states can serve as an identification marker.

In addition to “passive” methods, JavaScript
tools can also be employed. The markers
indicating a user belongs to the target category
may include:

Using high-contrast themes or color inversion
may indicate the user’'s need for improved
readability. This category can also include the use
of other color schemes or filters.

High zoom levels (above 150 %) may indicate
the user’'s implementation of technologies to
enhance content visibility. This category can also
include text size adjustments. Significant increases
in text size through browser settings may indicate
visual impairments.

128

Intensive keyboard navigation without mouse
interaction may indicate using a screen reader or
other assistive technologies.

Abnormally long page dwell time may
indicate using a screen reader or other assistive
technologies for slow content reading. Unusual
cursor movement patterns or lack of movement
for extended periods may indicate the use of
alternative input methods.

2.3. Cloaking Techniques. In this section,
we examine technical aspects that can be used
to create different experiences for users with and
without assistive technologies. Understanding
these methods is crucial for effectively detecting
and preventing potential security threats. The
section presents proof-of-concept implementations
of accessibility cloaking.

2.2.1.Server-side cloaking. Server-side
techniques are based on determining client
characteristics primarily on the server side and
delivering different content based on these
characteristics. The Chameleon Attack (Elyashar
et al.,, 2020) serves as an implementation
example. Depending on user characteristics, this
attack involves delivering content with varying
meanings in social networks. In our case, if
a user is identified as belonging to the target
category, they may be served a page that differs
from pages provided to other user groups. Such
methods can be used for both legitimate purposes
(providing more relevant content) and conducting
attacks. The technique doesn’t require special
markup or JavaScript usage, making it difficult to
detect. The only possible approach, in this case,
is co-browsing pages with agents that emulate
“regular’ and “assistive” clients and analyzing
differences between the presented content. Of
course, differences in output may be related to
different data processing for different accounts,
randomness in link collections, etc. Therefore,
analysis requires the application of intelligent
analysis methods alongside “conventional”
phishing detection tools. Thus, the difference in
presentation in this case is only one of the alert
factors, but not decisive.

2.2.2. HTML/CSS-based Cloaking Methods.
Below, we examine several approaches that allow
specially formed content to be displayed for users
utilizing assistive technologies. Among possible
implementations, we focus on approaches that rely
solely on HTML and CSS, without JavaScript usage.

A. Elements accessible only through keyboard
interaction. This method is based on significant
differences between the element’s content and
description and hiding interaction possibilities
when using a mouse (pointer).

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

<style>

.keyboard-only { pointer-events: none;}
</style>
<a class = “keyboard-only” onclick =
“privilegedAction()” aria-label = “Hidden
actions” > & nbsp;

B. Elements visible only to assistive tools. The
following example contains a hidden input field
(display: none attribute) that is not visible to most
users. However, the aria-label attribute makes it
accessible to screen readers. Users with visual
impairments might be prompted to enter their Multi-
Factor Authentication (MFA) code into this hidden
field. This can result in attackers intercepting this
code and gaining unauthorized access to users’
accounts.

<style>.hidden-field { display: none; } </
style>
<form>

<input type=»text» name=»token» value=»1234»
aria-label=»Enter your MFA code»
class=»rhidden-field» />

</form>

C. Displaying hidden blocks using aria-
describedby. This method uses the aria-
describedby attribute to link a hidden block with
a visible element. The hidden block contains
additional information that is read by screen
readers but not displayed visually. This allows for
providing extended descriptions or extra data for

assistive technology users without altering the
page’s visual appearance for other users.

<img src = “chart.png” alt = “Financial data
for Q3” aria-describedby = “chart-desc”>
<div id = “chart-desc” class = “hidden”>

Detailed breakdown of confidential financial
data, including projected earnings and market
strategies. </div>

D. Moving elements outside the ViewPort.
The.visually-hidden class is used to shift content
beyond the visible screen area, making it invisible
to users without assistive technologies. However,
screen readers still read this content. Malicious
actors can exploit this to direct users with visual
impairments to phishing sites or other harmful
resources while regular users remain unaware of
such content’s presence on the page.

<style>
.sr-only {
position: absolute;
left: -9999px;
width: 1px;

129

height: 1px;
overflow: hidden;
}
</style>
<div class=»sr-only»>
This content is only available to users of
screen readers. <a href=»https://example.
com/hidden-section»>Access to a hidden
section
</div>

E. Manipulating aria-label to create alternative
content. This method uses the aria-label attribute to
provide alternative text descriptions for elements.
Malicious actors can exploit this technique to
create content that significantly differs from visually
presented content. For example:

<a href = “https://example.com/page” aria-
label = “Access to confidential data”>
Click here for more information

In this example, screen reader users will hear
“Access to confidential data”, while sighted users
will see ‘Click here for additional information.’

F. overlays. In this case, an invisible overlay
covers part of the page. Using the opacity: 0 style,
it becomes completely transparent and invisible
to visual perception while remaining interactive.
Users who rely on screen readers or keyboard
navigation can interact with this link without
realizing it redirects them to a malicious resource.

<style>
.transparent-overlay {
opacity: ©;
position: absolute;
top: O;
left: ©;

width: 100%;
height: 100%;
}
</style>
<a href = “https://phishing-site.com”
class = “transparent-overlay” aria-label =
“Complete the transaction”>

G. Font size manipulation. Setting an extremely
small font size (for example, 1px) to hide text from
regular users while maintaining its accessibility to
assistive technologies.

<style>
.hidden-content {
font-size: 1px;
color: transparent;
}
</style>
<p>The text is visible to all users. </p>

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

<p class = “hidden-content” > This text will
be hidden visually, but accessible to screen
readers. </p>

The above list is obviously incomplete, but it gives
an idea of the set of patterns to pay attention to.

2.3. Countermeasures. In conclusion, it
should be noted that any differences in element
rendering between site versions for different
users are suspicious and warrant additional
verification. Performing such checks manually is
time-consuming, especially considering the need
to reconcile differences between two versions
that might be legitimate. Automated checks face
difficulties in verifying meaningful differences
between versions. Therefore, the verification tool
should have the following properties:
ability to conduct regular checks and
compare content between iterations;
maximization of check automation;
extensive use of Al tools to detect meaningful
discrepancies between elements in different
versions;
to detect server-side accessibility cloaking,
it is necessary to load the page at least twice,
emulating “regular” and “assistive” browsers.

It is important to note that most accessibility
cloaking techniques are technically valid from
HTML and ARIA specifications perspective, while
simultaneously violating multiple WCAG success
criteria. For instance, when an aria-label vastly
differs from visible text (e.g., displaying “More
information” while announcing “Enter credit card
details” to screen readers), it adheres to correct
ARIA syntax but violates WCAG 2.5.3 Label in
Name and 2.4.4 Link Purpose. Similarly, when
content is moved far outside the viewport using
valid CSS positioning (e.g., position: absolute; left:
-9999px), it follows proper CSS implementation
but contradicts WCAG 1.3.2 Meaningful Sequence
and 2.4.3 Focus Order requirements. Hidden input
fields using legitimate display: none properties with
aria-labels may be technically correct but conflict
with WCAG 1.3.1 Info and Relationships and 3.3.2
Labels or Instructions principles. These techniques
create a significant challenge for automated testing
tools that primarily focus on syntax validation and
basic WCAG rule checking, without the capability
to evaluate semantic relationships between visible
and hidden content or assess the legitimacy of
accessibility attribute usage.

There are numerous accessibilities checking
tools, such as Wave, Axe, and Lighthouse. A test
page was created to effectively test their ability
to detect inconsistencies from the provided list
(https://web-accessibility.sumdu.edu.ua/evil/
test.html). Lighthouse 12.2.1 and Axe 4.10.2 did

130

not detect elements contradicting accessibility
standards or additional rules. Wave 3.2.7.1 detect
example “G” as contrast WCAG rule violation
(WCAG rule 1.4.3, insufficient contrast) and alerts
to “the too-small text” (WCAG rule not provided). In
addition, example “D” was alerted with “Suspicious
link text” (referred to WCAG 2.4.4 Link Purpose (In
Context)), but it is only keyword-based detection.
Thus, standard tools show limitations in detecting
these specific cases.

The inability of standard accessibility testing
tools to detect such manipulations stems from
several fundamental limitations. First, these tools
primarily validate technical compliance with HTML
and ARIA specifications — confirming syntactic
correctness of aria-labels, proper implementation
of hidden elements, and valid references in
aria-describedby attributes. However, they
cannot assess the semantic integrity of these
implementations. For example, while a tool can
verify that an aria-label exists, it cannot determine
whether its content meaningfully matches the
visible interface elements or if it potentially
misleads users. Similarly, tools can confirm that
hidden elements are properly concealed using valid
CSS techniques but cannot evaluate whether this
hiding serves a legitimate accessibility purpose or
potentially obscures important content from some
users.

Second, automated tools lack contextual
understanding required to detect accessibility
cloaking. They cannot identify mismatches
between visible text and aria-labels, assess the
appropriateness of hidden content placement, or
evaluate the logical relationship between elements.
This becomes particularly challenging in complex
layouts where elements’ visual positioning might
not match their programmatic order. Additionally,
while tools can verify technical implementation of
ARIA attributes, they cannot determine whether
these implementations create a coherent
and honest experience for users of assistive
technologies. For instance, a technically correct
aria-describedby implementation might reference
content that contradicts or misrepresents the
visual presentation. These limitations of automated
testing highlight the need for more sophisticated
verification approaches that can evaluate both
technical compliance and semantic integrity of
accessibility implementations.

To detect the presented examples, we
developed a tool based on Axe-Core with additional
verification rules (Kuzikov, n.d.). The developed
tool covers only the specified inconsistencies,
serving as a quick means of their detection and
testing. Therefore, its overall application value

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

is limited. Instead, the authors are developing
a more comprehensive tool built on an agent-
based approach. The tool’s primary purpose under
development is to verify educational content for
Sumy State University’s LMS. The input postulates
include the availability of sufficient analysis tools,
each of which is unimodal. Educational content is
mostly multimodal. The created tool is based on
agents, where each agent can run its own type
of checks according to content type and presents
results in a format that can be combined and
harmonized with other results. The tool’'s sequence
diagram is shown in Figure 1.

WCAG requirements were chosen for mapping
results of different agents to single report. The tool
is under active development; currently, two agents
have been implemented: hypertext (as a wrapper
for Wave and Axe), PDF (wrapper for VeraPDF),
and images (contrast measurement). The rules
developed within this research have been
implemented as an additional agent for hypertext
documents. Such a platform gives the possibility to
transparently append new tools to process without
code rewriting. Other example — our investigation
on using a small language model to verify
semantic equality aria-labels and visible content
to automate checking WCAG rule 2.5.3. Checker

Frontend

User Scheduler ‘ w]

Task Queve

] —_—

{ Initiation of Check |

is implemented as separate agent based on axe-
code. Combining several tools into one report, as
we expect, leads to raising user awareness about
web accessibility standards.

3. Discussion

The growing prevalence of accessibility
features in web applications is a double-edged
sword. While these features are crucial for
ensuring inclusiveness and equal access to online
resources, malicious actors can also exploit
them to attack vulnerable users. It's important to
note that detecting accessibility cloaking is just
one aspect of securing vulnerable users. Other
potential threats, such as phishing, malware,
and social engineering, must also be considered.
A comprehensive approach to cybersecurity that
accounts for all users’ needs, including people
with disabilities, is key to creating a secure and
inclusive online environment.

One promising research direction is developing
Al agents that can mimic the behavior of users
with assistive technologies. These agents could
automatically check websites for accessibility
cloaking by interacting with pages in the same way
screen reader users and other assistive technology
users do. To detect discrepancies, the agents
could analyze screen reader-parsed content and

| Analyzgr Worker } Database

1. Request Check

2. Send File for Processing

3. Create FileCheck entry

With status "Scheduled”

: Planing

loo| [For each Analyzer]
4. Enqueue Analysis Task |
I >

 Anahod

5. Retrieve Task and start processing

(status “In Progress”)

6. Parform Accessibility Analysis
and Map to WCAG
_ 7. API Call: Submit Normalized WCAG Result
8. Store Normalized Result, Update Task Status (completed/error) -
alt / [If New Artifact Generated]
9. Engueue New Task for Artifact (Repeat from step 3)
el
{ Retrieve results |
10. Request Check
Status 3 1
11. Poll or WebSocket for Updates |
12 Query FileCheck and Task statuses ol
13. Push Real-Time Status Update
User Scheduler | Eronten | Backena | Task Queve Analyzer Worker | Datgoase
Q L J L L J L

Fig. 1. Sequence Diagram for Multi-agent Accessibility Verification Tool

131

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

compare it with visually displayed content. For
example, research by Sonowal and Kuppusamy
(2016) showed that existing anti-phishing browser
extensions have limited effectiveness for people
with visual impairments. This emphasizes the need
to develop specialized Al tools and algorithms
that consider this user group’s needs. The study
proposes the MASPHID model, which helps screen
reader users detect phishing sites using aural and
visual similarity indicators. This approach could be
valuable for integration into Al-based tools.

Is also important to note the progress in
automating website accessibility. Companies
like accessiBe (accessiBe, n.d.) are developing
innovative solutions that use artificial intelligence
to improve website accessibility automatically.
Their technology can analyze web pages in real
time, adjust for WCAG and ADA compliance, and
adapt the interface for different types of users
with disabilities. However, while such automated
solutions can significantly improve many websites’
accessibility, they also create new security and
privacy challenges. For instance, tools that
dynamically modify web page structure and
content could potentially be exploited by attackers
to create more sophisticated forms of accessibility
cloaking. Therefore, when implementing such
solutions, their impact on overall web resource
security must be carefully evaluated, and additional
security measures must be provided. Moreover,
while automated tools can significantly ease
the implementation of accessibility, they cannot
completely replace manual testing and evaluation
by users with disabilities.

A comprehensive approach combining
automated solutions, expert evaluation, and
testing by real users remains the most effective
way to ensure both accessibility and security of
web resources.

Summarizing the material discussed, we can
formulate several recommendations for both
developers and content consumers:

1. Website content should be similar for all
users. High WCAG compliance is preferable to
maintaining multiple separate content versions.
Multiple separate pages are more challenging
to keep in a consistent state. Existing problems
can be further complicated if multiple content
versions are maintained with divisions by other
characteristics, such as language.

2. Inconsistency between visibleand accessible
content indirectly indicates an attack. Therefore, it
should not occur, regardless of purpose.

3. Developers are responsible for content
providedbytheirsoftware,including user-generated
content. Regular security and accessibility testing

132

is mandatory, for example, using tools like Axe,
Wave, or similar. All data must be validated and
sanitized.

4. Creating a cyber-secure environment is a
complex task requiring developers’ and users’
effort. Using specialized anti-phishing software
(McAfee WebAdvisor, Avast Anti-Phishing, etc.),
regular software updates, and maintaining general
computer literacy and cybersecurity awareness
are essential components of this process.

4. Conclusions

As a general conclusion, we emphasize that
accessibility’s purpose is to make content equally
accessible to all users, not to create separate or
hidden experiences. Any differences must be
carefully considered and implemented with both
accessibility and security in mind. Developers
and security specialists should work together to
balance accessibility and security properly. This
may include:

Regular website audits for
dangerous use of accessibility features.
Implementation of additional security checks
for content that displays differently for different
user groups.

Training developers in proper practices
for implementing accessibility features without
creating security risks.

Using automated tools to detect potentially
dangerous patterns in accessibility code.

Ensuring accessibility without compromising
security is a critical responsibility for developers,
requiring a balance between inclusion and
protection. However, caution is necessary to avoid
creating new vulnerabilities when implementing
accessibility. Following best practices and regular
testing will help create a secure and inclusive web
space for all users. Improper or malicious use of
accessibility attributes and practices in HTML can
create serious vulnerabilities in web application
security. Using content hidden from view but
accessible only to assistive technology users,
attackers can:

Mislead users with visual impairments by
directing them to phishing sites or forcing them to
perform unwanted actions

Obtain confidential information such as
multi-factor authentication codes or personal data
Execute attacks that remain undetected by
most users and threat detection systems

Some solutions to the problems discussed
in the paper lie in increasing developers’ overall
awareness of web resource accessibility.
Furthermore, the mandatory implementation of
automated scanners such as Wave or Axe acts
as a motivating factor. The author’s tool presented

potentially

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

in the «Countermeasures» section is one of the
possible instruments. The product uses an agent-
based approach to combine results from multiple
tools into a single harmonized report. User
awareness of general principles is postulated as
more critical than the number of verified rules. The
analysis of Ukrainian higher education institutions’
websites presented in (Kuzikov, 2024), which
revealed a broad spectrum of WCAG standard
non-compliance, confirms this thesis more.

4.1. Limitations and Future Work. Our
study, while expanding our understanding of
potential threats associated with improper use of
accessibility technologies, has several limitations
worth considering. First, we focused primarily on
web technologies, leaving mobile applications
and other platforms where similar issues may
arise outside the scope. This limits the overall
applicability of our findings. Second, our analysis is
based on a sample of Ukrainian higher education
institutions’ websites (Kuzikov, 2024). While this
provides valuable information, the results may
not reflect the situation in other sectors, mainly

e-commerce, where accessibility abuse could have
more severe consequences. Finally, we focused
on technical aspects, paying less attention to the
social and ethical implications of using accessibility
technologies in the context of cybersecurity.

Including automated verification tools as
mandatory elements in the content preparation
cycle for publication will increase awareness of
web accessibility principles and approaches and
not only help overcome the limitations of the
current research but also contribute to creating a
more secure and inclusive digital environment for
all users, regardless of their capabilities.

Acknowledgments: The authors express
their sincere gratitude to our colleague Kuzikova
Svitlana, whose example continues to inspire us as
she works daily to make this world more accessible.
We are particularly grateful for her expert advice as
a direct user of accessibility technologies, which
has significantly enriched our understanding of
practical implementation aspects. This work was
funded by the Ministry of Education and Science
of Ukraine, Grant No. 0121U109466.

BIBLIOGRAPHY:

1. WebAccessibility SolutionforADACompliance &WCAG. accessiBe.:Be6-cant. URL: https://accessibe.com/
(mata 3BepHeHHs: 07.04.2025).

2. Add-ons for Firefox (en-GB). URL: https://addons.mozilla.org/en-GB/firefox/ (aata 3BepHeHHs: 07.04.2025).

3. Akgul Y. Accessibility, usability, quality performance, and readability evaluation of university websites
of Turkey: a comparative study of state and private universities. Universal Access in the Information Society.
2021. Vol. 20, Ne 1. P. 157-170. DOI: https://doi.org/10.1007/S10209-020-007 15-W

4. Alim S. Web Accessibility of the Top Research-Intensive Universities in the UK. SAGE Open>.
2021. Vol. 11, Ne 4. DOI: https://doi.org/10.1177/21582440211056614

5. Bohman P.R., Andersen S. A conceptual framework for accessibility tools to benefit users with cognitive
disabilities. Proc. International Cross-Disciplinary Workshop on Web Accessibility, 2005 W4A at the World
Wide Web Conference, WWW2005. 2005. P. 85-89. DOI: https://doi.org/10.1145/1061811.1061828

6. Chrome Web Store. Extensions. Google. URL: https://chromewebstore.google.com (gata 3BepHEHHS:
07.04.2025).

7. Automated Testing Identifies 57 % Digital Accessibility Issues. Deque. URL: https://www.deque.com/blog/
automated-testing-study-identifies-57-percent-of-digital-accessibility-issues/ (aata 3BepHeHHs: 07.04.2025).

8. AXE: Accessibility Testing Tools and Software. Deque. URL.: https://www.deque.com/axe/ (anata 3Bep-
HeHHs: 07.04.2025).

9. Directive (EU) 2016/2102 of the European Parliament and of the Council of 26 October 2016 on the
accessibility of the websites and mobile applications of public sector bodies. URL: https://eur-lex.europa.eu/eli/
dir/2016/2102/0j/eng (nata 3BepHeHHs: 07.04.2025).

10. Elyashar A., Uziel S., Paradise A., Puzis R. The Chameleon Attack: Manipulating Content Display
in Online Social Media. The Web Conference 2020 — Proc. World Wide Web Conference, WWW 2020.
2020. P. 848-859. DOI: https://doi.org/10.1145/3366423.3380165

11. ETSI EN 301 549. Accessibility requirements for ICT products and services. V3.2.1, Mar. 2021.

12. Goo S.K., Irvine J.M., Andonovic |., Tomlinson A. Preserving privacy in assistive technologies. Proc.
IEEE International Conference on Communications Workshops, ICC 2009. 2009. DOI: https://doi.org/10.1109/
ICCW.2009.5208079

13. Ismail A., Kuppusamy K.S. Web accessibility investigation and identification of major issues of
higher education websites with statistical measures: A case study of college websites. Journal of King Saud
University — Computer and Information Sciences. 2022. Vol. 34, Ne 3. P. 901-911. DOI: https://doi.org/10.1016/
J.JKSUCI.2019.03.011

133

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

14. ISO/IEC 40500:2012. Information technology — W3C Web Content Accessibility Guidelines (WCAG)
2.0. Geneva, Switzerland: International Organization for Standardization, 2012. URL: https://www.iso.org/
standard/58625.html (gata 3BepHeHHs: 07.04.2025).

15. Jang Y., Song C., Chung S. P, Wang T., Lee W. A11y attacks: Exploiting accessibility in operating
systems. Proc. ACM Conference on Computer and Communications Security. 2014. P. 103-115.
DOI: https://doi.org/10.1145/2660267.2660295

16. Kuzikov B. Web Accessibility HUB. URL: https://web-accessibility.sumdu.edu.ua/ (gata 3BepHeHHS:
07.04.2025).

17. Kuzikov B. EVIL-detector. GitHub. URL: https://github.com/potapuff/evil-detector (nata 3BepHeHHS:
07.04.2025).

18. Mpo BHECEHHS 3MiH [0 AesKMX 3aKOHIB YKpaiHu LLoJo AOCTyny ocib 3 0cobnmBiMM OCBITHIMK NoTpe-
6amu go ocBiTHiX nocnyr : 3akoH YkpaiHm Big 06.09.2018 p. Ne 2541-VIII. URL: https://zakon.rada.gov.ua/laws/
show/2541-19 (nata 3BepHeHHs: 07.04.2025).

19. Leguesse Y., Vella M., Colombo C., Hernandez-Castro J. Reducing the Forensic Footprint with
Android Accessibility Attacks. Lecture Notes in Computer Science. 2020. Vol. 12386. P. 22-38. DOI: https://
doi.org/10.1007/978-3-030-59817-4_2

20. Lei, C., Ling, Z., Zhang, Y., Dong, K., Liu, K., Luo, J., & Fu, X. Do Not Give a Dog Bread Every Time
He Wags His Tail: Stealing Passwords through Content Queries (CONQUER) Attacks. Proc. Network and
Distributed System Security Symposium (NDSS). 2023. DOI: https://doi.org/10.14722/ndss.2023.24005

21. Lynx Information. URL: https://lynx.browser.org/ (aata 3BepHeHHs: 27.12.2024).

22. MehralianF., SalehnamadiN., Hug S. F., Malek S. Too Much Accessibility is Harmful! Automated Detection
and Analysis of Overly Accessible Elements in Mobile Apps. ACM International Conference Proceeding Series.
2022. DOI: https://doi.org/10.1145/3551349.3560424

23. RenaudK., Coles-Kemp L. Accessible and Inclusive Cyber Security: ANuanced and Complex Challenge.
SN Computer Science. 2022. Vol. 3, Ne 5. P. 1-14. DOI: https://doi.org/10.1007/S42979-022-01239-1

24. IT Accessibility Laws and Policies. Section508.gov. URL: https://www.section508.gov/manage/laws-
and-policies/ (nata 3BepHeHHs: 07.04.2025).

25. Sonowal G., Kuppusamy K.S. MASPHID: A Model to Assist Screen Reader Users for Detecting
Phishing Sites Using Aural and Visual Similarity Measures. ACM International Conference Proc. Series.
2016. Vol. 25-26-August-2016. P. 87. DOI: https://doi.org/10.1145/2980258.2980443

26. Wang Y. The third wave? Inclusive privacy and security. ACM International Conference Proc. Series.
2017. Vol. 9. P. 122—-130. DOI: https://doi.org/10.1145/3171533.3171538

27. WAVE Web Accessibility Evaluation Tools. URL: https://wave.webaim.org/ (nata 3sepHeHHsi: 07.04.2025).

28. WebblE Web Browser — browse the web using only text. URL: https://www.webbie.org.uk/webbrowser/
index.htm (gara 3sepHeHHs: 07.04.2025).

REFERENCES:

1. accessiBe. (n.d.). Web Accessibility Solution for ADA Compliance & WCAG. Retrieved from:
https://accessibe.com/

2. Add-ons for Firefox (n.d.). Retrieved from: https://addons.mozilla.org/en-GB/firefox/

3. Akgdl, Y. (2020). Accessibility, usability, quality performance, and readability evaluation of university
websites of Turkey: A comparative study of state and private universities. Universal Access in the Information
Society, 20 (1). https://doi.org/10.1007/s10209-020-00715-w

4. Alim, S. (2021). Web accessibility of the top research-intensive universities in the UK. SAGE Open, 11(4),
215824402110566. https://doi.org/10.1177/21582440211056614

5. Bohman, P.R., & Anderson, S. (2005). A conceptual framework for accessibility tools to benefit users with
cognitive disabilities. Proceedings of the 2005 International Cross-Disciplinary Workshop on Web Accessibility
(W4A) — W4A "05. https://doi.org/10.1145/1061811.1061828

6. Chrome Web Store, «Extensions». (2025). Google. Retrieved from: https://chromewebstore.google.com

7. Deque (n.d.) Automated Testing Identifies 57 % Digital Accessibility Issues. Retrieved from:
https://www.deque.com/blog/automated-testing-study-identifies-57-percent-of-digital-accessibility-issues/

8. Deque. (2025). Axe: Accessibility for development teams. Retrieved from: https://www.deque.com/axe/

9. Directive (EU) 2016/2102 of the European Parliament and of the Council of 26 October 2016 on the
accessibility of the websites and mobile applications of public sector bodies. (2016, October 26). Official Journal
of the European Union, L 327, 1-15. Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32016L2102&rid=1

134

Information Technology: Computer Science, Software Engineering and Cyber Security, Bun. 1, 2025

10. Elyashar, A., Uziel, S., Paradise, A., & Puzis, R. (2020). The Chameleon Attack: Manipulating
Content Display in Online Social Media. In WWW ‘20. The Web Conference 2020. ACM.
https://doi.org/10.1145/3366423.3380165

11. ETSI EN 301 549 V3.2.1. (2021, March). Accessibility requirements for ICT products and services.
European Telecommunications Standards Institute (ETSI).

12. Goo, S.K., Irvine, J.M., Andonovic, |., & Tomlinson, A. (2009). Preserving Privacy in Assistive
Technologies. In 2009 IEEE International Conference on Communications Workshops. |IEEE. https://doi.org/
10.1109/iccw.2009.5208079

13. Ismail, A., & Kuppusamy, K. S. (2019). Web accessibility investigation and identification of major issues
of higher education websites with statistical measures: A case study of college websites. Journal of King Saud
University — Computer and Information Sciences, 34 (3). https://doi.org/10.1016/j.jksuci.2019.03.011

14. ISO/IEC 40500:2012. (2012). Information technology — W3C Web Content Accessibility Guidelines
(WCAG) 2.0. International Organization for Standardization. Retrieved from: https://www.iso.org/
standard/58625.html

15. Jang, Y., Song, C., Chung, S.P., Wang, T., & Lee, W. (2014). A11y Attacks. In CCS’14: 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM. https://doi.org/10.1145/2660267.2660295

16. Kuzikov, B. (2024). Web Accessibility HUB. Retrieved from: https://web-accessibility.sumdu.edu.ua/

17. Kuzikov, B. (n.d.). EVIL-detector. GitHub. Retrieved from: https://github.com/potapuff/evil-detector

18. Law of Ukraine Ne 2541-VIIl “On Amendments to Certain Laws of Ukraine Regarding Access of Persons
with Special Educational Needs to Educational Services”. (2018). Vidomosti Verkhovnoi Rady (VVR), 43,
art. 345. Retrieved from: https://zakon.rada.gov.ua/laws/show/2541-19#Text

19. Leguesse, Y., Vella, M., Colombo, C., & Hernandez-Castro, J. (2020). Reducing the Forensic Footprint
with Android Accessibility Attacks. In Security and Trust Management (pp. 22-38). Springer International
Publishing. https://doi.org/10.1007/978-3-030-59817-4_2

20. Lei, C., Ling, Z., Zhang, Y., Dong, K., Liu, K., Luo, J., & Fu, X. (2023). Do Not Give a Dog Bread Every
Time He Wags His Tail: Stealing Passwords through Content Queries (CONQUER) Attacks. In Network and
Distributed System Security Symposium. Internet Society. https://doi.org/10.14722/ndss.2023.24005

21. Lynx Information (2024, December 27). Retrieved from: https://lynx.browser.org/

22. Mehralian, F., Salehnamadi, N., Hug, S.F., & Malek, S. (2022). Too Much Accessibility is Harmful!
Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps. In ASE 22: 37th IEEE/ACM
International Conference on Automated Software Engineering. ACM. https://doi.org/10.1145/3551349.3560424

23. Renaud, K., & Coles-Kemp, L. (2022). Accessible and inclusive cyber security: A nuanced and complex
challenge. SN Computer Science, 3 (5). https://doi.org/10.1007/s42979-022-01239-1

24. Section 508 of the Rehabilitation Act of 1973, Pub. L. No. 93-112, 87 Stat. 355 (1973). Retrieved from:
https://lwww.section508.gov/manage/laws-and-policies

25. Sonowal, G., & Kuppusamy, K. S. (2016). MASPHID. In ICIA-16: International Conference on Informatics
and Analytics. ACM. https://doi.org/10.1145/2980258.2980443

26. Wang, Y. (2017). The Third Wave? In NSPW ‘“17: 2017 New Security Paradigms Workshop. ACM.
https://doi.org/10.1145/3171533.3171538

27. WebAIM. (2025). WAVE Web Accessibility Tool. Wave.webaim.org. Retrieved from:
https://wave.webaim.org/

28. WebblE Web Browse. (n.d.) browse the web using only text. Retrieved from: https://www.webbie.org.uk/
webbrowser/index.htm

135

