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LOSSLESS BINARY DATA COMPRESSION METHODS 
FOR INCREASING THE PRODUCTIVITY OF SOFTWARE SYSTEMS

The article describes methods used for data compression without considering formats or types. Data compression 
is the process of encoding data to reduce its size; lossless data compression means that the reverse decoding 
process restores the data in its original form. There are limitations to lossless data compression that depend 
on the information entropy of the message: the lower it is, the greater the potential compression ratio of this data. 
Data with high entropy, for example, random or previously compressed with a sufficiently optimal encoding, cannot 
be compressed.

The work aims to investigate using data compression algorithms with different types of information, formats 
or information entropy. Lossless data compression algorithms are divided into subcategories, in particular, dictionary 
and entropy, which differ in the principle of operation. Dictionary and entropy methods can also be combined 
to increase compression efficiency.

The scientific novelty lies in finding patterns between the algorithms used and the data compression ratios 
of specific formats. For the first time, data on many different data compression algorithms, both independent 
and those consisting of others, were processed and systematized. As a result, data were obtained on compression 
methods best suited for compressing images, Internet pages, source code, and other widely used formats.

The research methodology is based on measuring several characteristics of the original and compressed files 
and the operation of algorithms with subsequent comparison of this data. Therefore, files can be distinguished 
by  format and information entropy before compression. After compression, a compression ratio can be found 
that characterizes the efficiency of the algorithms. The study involves universal algorithms that perceive information 
as a specific sequence of bytes. Thus, they can be applied to various file formats, including those most often used 
in distributed data storage systems.

The conclusion contains practical recommendations for the application of data compression algorithms. 
The data obtained during the study can be used for integration into other software products or further analysis.

Key words: compression, algorithm, entropy, software system, C#, ASP.NET.
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Science, Software Engineering and Cyber Security, 162–168, doi: https://doi.org/10.32782/IT/2025-1-22

МЕТОДИ СТИСНЕННЯ БІНАРНИХ ДАНИХ БЕЗ ВТРАТ ДЛЯ ПІДВИЩЕННЯ 
ПРОДУКТИВНОСТІ ПРОГРАМНИХ СИСТЕМ

У статті описані методи, що застосовуються для стискання даних без урахування форматів, 
типів тощо. Стискання даних – це процес їхнього кодування, що має на меті зменшення їхнього обсягу; 
стискання даних без втрат означає, що обернений процес декодування відновлює дані в початковому 
вигляді. Для  стискання даних без втрат існують обмеження, що залежать від інформаційної ентропії 
повідомлення: чим вона нижча, тим більшим є потенційний коефіцієнт стиснення цих даних. Дані з високою 
ентропією, наприклад, випадкові або попередньо стиснуті достатньо оптимальним кодуванням, не можна 
стиснути.

Метою роботи є дослідити використання алгоритмів стиснення даних із різними видами 
інформації, форматами, інформаційною ентропією тощо. Алгоритми стиснення даних без поділяються 
на  підкатегорії, зокрема на словникові та ентропійні, що розрізняються за принципом дії. Також словникові 
та ентропійні методи можуть бути об’єднані для підвищення ефективності стискання.

Наукова новизна полягає в знаходженні закономірностей між алгоритмами, що застосовуються, 
та коефіцієнтами стиснення даних певного формату. Вперше оброблено та систематизовано дані 
про велику кількість різних алгоритмів стиснення даних, як самостійних, так і таких, що складаються 
з інших. У результаті отримано дані про методи стиснення даних, що найкраще підходять для стискання 
зображень, інтернет-сторінок, вихідного коду тощо.

Методологія дослідження базується на вимірюванні кількох характеристик оригінальних та стиснених 
файлів, а також роботи алгоритмів із подальшим співставленням цих даних. Так, файли можуть бути 
розрізнені за форматом та інформаційною ентропією, а після стиснення можна знайти коефіцієнт 
стиснення, що характеризує ефективність роботи алгоритмів. В дослідженні беруть участь універсальні 
алгоритми, що сприймають будь-яку інформацію як певну послідовність байтів. Таким чином, вони 
можуть бути застосовані до різних форматів файлів, зокрема таких, що найчастіше використовуються 
в розподілених системах зберігання даних.

Висновок містить практичні рекомендації по застосуванню алгоритмів стиснення даних. Дані, 
отримані в ході дослідження, можуть бути використані для інтегрування в інші програмні продукти, 
або подальшого аналізу.

Ключові слова: стиснення даних, алгоритм, ентропія, програмна система, C#, ASP.NET.

Introduction. In the modern world, the amount 
of new data is constantly growing. Accordingly, the 
costs of storing and transporting such volumes of 
data are also growing. Modern data compression 
algorithms include entropy (frequency), dictionary, 
and context mixing. Often, algorithms complement 
each other, significantly improving compression 
ratios. One of the well-known examples of this is 
Deflate, which includes two others – LZ77 and the 
optimal Huffman code.

A data compression algorithm is a data encoding 
that reduces their occupied volume. Usually, such 
transformations are reversible; that is, they have an 
inverse action called recovery or decompression, 
which consists of partial or complete recovery of 
the original data. Data compression is based on 
reducing redundancy, so entropy coding encodes 
symbols that occur more often in the data into 
shorter sequences, usually less than 8 bits. The 
relevance of developing and improving data 
compression algorithms is that more substantial 
data compression with the ability to accurately 
(using lossless compression algorithms) restore the 
original information allows for reducing the costs of 
their storage, transportation and processing.

Topicality of the research. The main 
characteristic of data compression algorithms is 
the compression ratio – the ratio of the original 
data’s size to the data’s size after the algorithm has 
done its work. If the algorithm works with a ratio of 
1, it does not perform valuable work since the data 
volume does not decrease; that is, compression is 
not performed. Such property is native to algorithms 
such as the Burroughs-Wheeler transform, which 
is not a compression algorithm but can be used as 
an intermediate stage in data preparation for other 
algorithms. If the algorithm works with a coefficient 
less than 1, it performs a disservice; instead of 
compressing, it actually increases the volume of 
input data.

The topicality of developing and improving data 
compression algorithms lies, first of all, in the fact 
that stronger data compression with the ability to 
accurately (using lossless compression algorithms) 
restore the original information allows reducing the 
costs of their storage, transportation and processing. 
Therefore, there are competitions like Hutter Prize 
or Large Text Compression Benchmark.

Literature review. To determine the 
effectiveness of lossless data compression 
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algorithms, the compression ratio is determined – 
the ratio of the initial size of uncompressed data to 
the size of the data at the output of the algorithm (1).

	 0 .
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The mean entropy of the message is calculated 
using Shannon entropy.
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where Η(Χ) is the average entropy of the message; 
K is a constant coefficient that determines the 
units of measurement of entropy, and its change is 
equivalent to a change in the base of the logarithm; 
pi is the frequency of occurrence of the i-th symbol 
in the message; n is the power of the dictionary, 
which is actually equal to the number of symbols in 
it (Shannon, 1948, p. 12).

N i.i.d. random variables each with entropy H(X) 
can be compressed into more than N H(X) bits 
with negligible risk of information loss, as N → ∞; 
conversely if they are compressed into fewer than 
N H(X) bits it is virtually certain that information will 
be lost (McKay, 2003, p. 92). This enables lossless 
compression algorithms, which reduce this 
redundancy and assign new codes to the symbols, 
according to the amount of information they carry.

Although lossless data compression cannot 
bypass boundaries set by information entropy, 
new ways of finding the best suitable encoding 
methods are discovered almost every year. 
Feature-based data compression concept is 
becoming more popular nowadays, where features 
means significant pieces of information, important 
for a human or a machine (Podgorelec, 2024). The 
methods that involve context modeling for symbols 
or larger entities prediction are gaining popularity, 
too, if compression ratio is more important than 
speed (Mohideen, 2021). The context modeling 
concept developed into using machine learning 
(Lopes, 2022).

For distributed platforms, where the data is 
anticipated to be accessed much more than 
uploaded, speed of decompression becomes 
much more important than the compression 
ratio. Several algorithms exist to achieve fast 
decompression (Collet, 2011).

The aim of the research. Based on the analysis 
of the subject area, the following tasks can be set 
for solving during the research:

–	 investigate lossless compression algorithms 
for various types of data, in particular text, video, 
static images, etc., and their combinations;

–	 determine the criteria for comparing the 
algorithms under study and use them to compare 

the effectiveness of applying compression methods 
to certain types of files;

–	 using the obtained data, develop an 
application that will select the necessary 
compression algorithm for the data provided by the 
user.

This set of tasks aims to improve understanding 
of data compression methods. During their solution 
and additional experiments, different algorithms 
and their combinations will be compared, which will 
allow assessing the usefulness of both newer and 
older data compression methods. Therefore, the 
work aims to investigate using data compression 
algorithms with different types of information, 
formats or information entropy.

Overview of data compression methods. 
The main requirement for lossless compression 
algorithms, unlike lossy ones, is the ability to 
fully recover the data that has been compressed. 
Accordingly, each algorithm has its own mechanism 
for ensuring full reversibility of compression 
operations.

The standard LZ77 algorithm encodes repeated 
sequences as two numbers – offset and match 
length. For each sequence of symbols x[ i ]..x[ j ], 
where i, j – indices of the symbols in a message, 
the algorithm checks whether such sequence 
is present in the buffer. If a match is found, then 
sequence x[ i ]..x[ j + 1] is checked, until for some 
sequence x[ i ]..x[ j + 1] the match is no longer 
found. If no match is found, the algorithm finds the 
offset from the last index of the sliding buffer to the 
first index of the sequence c, and match length  l. 
After this, the sequence x[ i ]..x[ j + 1] is written to 
the end of the buffer, and the three values c, l and 
x[ j ] are written to the match (Ziv, Lempel, 1977).

The decoding of the values is performed 
backwards. For each (c, l, x[ j ]) write to the buffer 
the sequence that starts on the c index from the 
end and lasts l symbols, and write x[ j ] to the end 
of the buffer. If l > c, the sequence is repeated 
cyclically.

Figures 1 depicts the processes of encoding of 
a sample text “abcabdabdabf”.

Huffman algorithm, unlike LZ77, is an entropy 
compression method. It consists of two parts: 
constructing an optimal code tree and generating 
the encoded sequence. In a non-adaptive 
algorithm for constructing an optimal code tree, 
it is necessary to calculate the frequency of each 
symbol and, using the obtained table (dictionary) of 
frequencies and taking the symbols as the leaves 
of the tree, apply the following algorithm:

1.	 select two nodes with the lowest frequencies, 
which are taken as their «weight» and create a 
parent node from them, the weight of which will 
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be the sum of the weights of the selected child 
elements;

2.	 for the left and right arcs from the parent 
element to the children, 0 and 1 are assigned;

3.	 steps 1–2 are repeated, and now the 
newly created node will be in the list of nodes 
free for selection, and its child elements become 
unavailable for selection;

4.	 when only one free node remains in the tree, 
the tree is considered complete, and this node is 
its root.

Thus, the tree is built from the leaves to the 
root. Figure 2 shows an example of building a tree 
for a certain symbol frequency table.

After building the tree, we get a scheme by 
which any symbol from the dictionary is encoded. 
To encode a message, the algorithm traverses 

the tree from the corresponding leaf to the root 
and, at each transition to the code, adds 1 or 
0, respectively. Having reached the root, the 
algorithm reverses the sequence, obtaining the 
desired code.

For decoding using a non-adaptive algorithm, it 
is necessary to have data on symbol frequencies 
in order to build a tree similar to that presented in 
Figure 3. Then, having the compressed data and 
taking into account that all codes are prefixes, we 
can apply the following algorithm:

1.	 take the next bit from the sequence and add 
it to the buffer;

2.	 if the value in the buffer matches the symbol 
code, write this symbol;

3.	 repeat until the end of the encoded message 
is reached.

Fig. 1. LZ77 Encoding process

Fig. 2. Huffman tree
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Deflate compression method combines LZ77 
and Huffman compression to achieve higher 
compression ratios (Deutsch, 1996). A typical 
Deflate stream consists of blocks, each preceded 
by a three-bit header that specifies whether the 
block is the last one and the encoding type. Thus, 
the first bit, set to zero, indicates that the block is 
not the last one, and vice versa, a one indicates 
that the block in question is the last one in the 
stream. The next two bits of the block specify the 
type of Huffman encoding that was applied to the 
data in it.

Deflate allows to combine the dictionary LZ77 
algorithm that removes the repetitions in blocks, 
and then compress the result with Huffman optimal 
encoding. It ensures that the data with nearly equal 
distribution of symbols will still be compressed.

Brotli comes as a program with a static 
dictionary containing over 10,000 words and 
terms from English and some other languages ​​
and their transformations, determined by prefixes 
and suffixes (Alakuijala, 2016). The algorithm uses 
them to recognize points in the code and does 
not read the entire code, instead it finds points 
of interest in text, determines a certain term from 
them and moves on.

By using the dictionary, Brotli has significantly 
improved Gzip compression, which does not use 
it. Brotli’s work is also based on the use of LZ77 
and optimal Huffman coding, but Brotli also uses a 
context modeling algorithm. In total, the algorithm 
has four context determination modes available to 
it, which determine its identifier. They are based 
on the last two bytes of the stream p1 and p2. At 
the beginning of the stream, these two bytes are 
initialized as zero. The context is determined by six 
least or most significant bits of p1 (LSB6, MSB6), 
or a composite function (UTF8, Signed).

Concerning context modelling method, the PPM 
(Prediction by Partial Matching) algorithm is a 
special case of it. Its basic idea is to find the context 

of the current symbol from some previous ones. 
The model does not perform any compression 
but only predicts the value of the symbol being 
compressed using entropy compression methods 
such as optimal Huffman or arithmetic coding.

Usually, the length of the context used is limited. 
It is denoted as n, and the n-order model is denoted 
as PPM(n). If the context of n symbols cannot 
be predicted, then a context of n - 1 symbols is 
used. The transitions are recursive until a context 
is found or until n becomes 0. PPM represents a 
variant of the shuffling strategy, where probability 
estimates made using contexts of different lengths 
are combined into a total probability (Cleary, 1997). 
Then, this estimate is encoded by some entropy 
encoder, usually optimal Huffman coding or 
arithmetic. Compression occurs at the stage of 
using entropy coding.

Testing of combined compression 
algorithms. The value of the average entropy is 
maximum for messages in which the frequencies 
of occurrence of all symbols from the dictionary 
are equal. By the formula (3),

	 ( ) 2 2

1 1 1
max log log ,

n
H

n n n

- ⋅
= ⋅ = - 	 (3)

where max(H) is the maximum average message 
entropy for a dictionary of n symbols, which all 

occur with frequency of 1
.

n
For messages using more than one character, 

the minimum average entropy can be obtained 
when the difference between the character 
frequencies is the largest. Assuming that each 
character from the dictionary occurs at least once 
in the message and the message is of constant 
length, we have the highest possible frequency of 
a single character:

	 ( ) 1 1
max 1 , ,

d n d
p n d

n n

- - +
= - = ≥ 	 (4)

Fig. 3. User interface with the demonstration of the research results
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where max(p) is the maximum possible symbol 
frequency, d is the dictionary power, n is the 
message length.

Formulas (3) and (4) are used for generating 
test data. Balancing the dictionary volume and 
frequencies of symbols, we can achieve the 
desired entropy for the test data. Also, real files 
with different formats can be added to compare the 
testing with real data.

A separate application was created for the 
research, which includes methods for data 
management and implementation of compression 
algorithms and libraries. In particular, for 
algorithms such as Deflate and Brotli, the System.
IO.Compression library was used. For others, 
separate open-source implementations were used 
(PPM, LZ77). Huffman coding was implemented 
independently using.NET 8 and C# (Ding, 2024).

For each entropy value from 0 to 9, data 
of different sizes was generated, defined by 
categories from 100 bytes to 1 megabyte. The 
file size may differ from the size declared in the 
category by no more than 6 % for data of 100 bytes 
and no more than 2 % for others, except for the 
exceptions described below.

According to formula (3), the maximum average 
message entropy achieved using 100 bytes is 

2

1
log 6,64

100
- ≈  bits per symbol. Therefore, to 
achieve entropy close to 7 and 8, respectively, 
110 and 250 bytes are used, which gives the 

average message entropy 2

1
log 6.78

110
- ≈  and 

2

1
log 7,96

250
- ≈  bits per symbol, respectively. 
Files of other sizes are generated without changes 
using the same symbol rates.

Results. To demonstrate the results 
obtained from the experiments, an application 
was developed that allows the analysis of files 
provided by the user and the determination of 
the algorithms whose application will give the 
highest compression ratios. On the client side, 
the average entropy of the data he provided, the 

file size and its extension are calculated and sent 
to the server. The algorithm on the server side 
selects algorithms with the highest compression 
ratios for such a file, after which the client part 
offers the user to compress the provided file with 
one of these algorithms. The compressed file can 
also be restored using another interface.

To implement the server part ASP.NET and 
the C# programming language were used. Data 
is obtained from a previously created MS SQL 
database, communication occurs using the Entity 
Framework ORM. The client part was developed 
using React using the Axios library to process GET 
and POST requests. Figure 3 shows the example 
of the user interface of the demonstration program.

The system developed during the research will 
help users find the compression algorithm that is 
fast enough and gives the optimal compression 
ratio. It is also open for future enhancements like 
adding new properties or algorithms.

Conclusions. Despite limits set by fundamental 
theory of information, lossless compression 
remains topical. The methods that combine old 
and well-tried compression algorithms with state-
of-the-art concepts like feature-based coding or 
prediction algorithms based on context modeling or 
machine learning gained popularity for combining 
high compression speed and ratios.

This paper represents the methods of 
data compression and the methods of their 
categorization. The results are used in the 
demonstration program to predict the compression 
ratio and time based on previous experiments. 
The predictions made by the algorithm are precise 
in most of the cases, which proves that mean 
entropy of a  message is the main concept in its 
compression.

Future researches of this topic could be 
dedicated to the algorithms utilizing context 
modeling and machine learning. Near-lossless 
compression remains topical, too, especially 
combined with lossless compression methods and 
utilized on images, audio etc (Jeromel, 2019).
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