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LOSSLESS BINARY DATA COMPRESSION METHODS
FOR INCREASING THE PRODUCTIVITY OF SOFTWARE SYSTEMS

The article describes methods used for data compression without considering formats or types. Data compression
is the process of encoding data to reduce its size; lossless data compression means that the reverse decoding
process restores the data in its original form. There are limitations to lossless data compression that depend
on the information entropy of the message: the lower it is, the greater the potential compression ratio of this data.
Data with high entropy, for example, random or previously compressed with a sufficiently optimal encoding, cannot
be compressed.

The work aims to investigate using data compression algorithms with different types of information, formats
or information entropy. Lossless data compression algorithms are divided into subcategories, in particular, dictionary
and entropy, which differ in the principle of operation. Dictionary and entropy methods can also be combined
to increase compression efficiency.

The scientific novelty lies in finding patterns between the algorithms used and the data compression ratios
of specific formats. For the first time, data on many different data compression algorithms, both independent
and those consisting of others, were processed and systematized. As a result, data were obtained on compression
methods best suited for compressing images, Internet pages, source code, and other widely used formats.

The research methodology is based on measuring several characteristics of the original and compressed files
and the operation of algorithms with subsequent comparison of this data. Therefore, files can be distinguished
by format and information entropy before compression. After compression, a compression ratio can be found
that characterizes the efficiency of the algorithms. The study involves universal algorithms that perceive information
as a specific sequence of bytes. Thus, they can be applied to various file formats, including those most often used
in distributed data storage systems.

The conclusion contains practical recommendations for the application of data compression algorithms.
The data obtained during the study can be used for integration into other software products or further analysis.
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METOAOMN CTUCHEHHA BIHAPHUX OAHUX BE3 BTPAT ANA NIABULLEHHA
NPOAYKTUBHOCTI MPOrPAMHUX CUCTEM

Y cmammi onucaHi memodu, wo 3acmocosytombcs Orisi cmuckaHHs OaHux 6e3 ypaxyeaHHs hopmamis,
murnig mouwjo. CmuckaHHs1 daHUX — Ue Mpouec iXHb020 KOOy8aHHS, W0 Mae Ha Memi 3MEHWEeHHS iXHb020 obcsiey;
cmuckaHHs1 OaHux 6e3 empam o3Hayae, w0 obepHeHuUU rnpouec 0ekoOysaHHsT 8IOHOB/ME OaHi 8 no4amkosomy
guensadi. [ns cmuckaHHs1 OaHux 6e3 empam iCHytomb OOMeXeHHs, WO 3anexamb 8i0 iHghopmauitiHoi eHmponii
MOBIOOMIIEHHSI: YUM 80Ha HUXYa, MuM BiflbLuM € MomeHuitHUl KoegiyieHm cmucHeHHs yux 0aHux. [aHi 3 8UCOKO
eHmporiero, Harpuknad, surnadkosi abo nonepedHbo cmucHymi ocmamHb0 onMuMasibHUM KOOY8aHHSIM, HE MOXHa
cmucHymu.

Memotro pobomu € Oocnidumu 8UKOPUCMAaHHS an2opummie CMUCHEHHS OaHuX i3 pisHUMU eudamu
iHgbopmauii, thopmamamu, iHgbopmauitiHo eHmporieo mowo. Aneopummu cmucHeHHsI 0aHux 6e3 nodinsomecs
Ha nidkameaopii, 30Kpema Ha ClI08HUKO8I ma eHmpPOoniliHi, U0 PO3Pi3HSIIOMbCS 3a MpUHUUoM Oii. Takox CrTI08HUKO8I
ma eHmponitHi Memoou MoXymb 6ymu 06’e0HaHi 05151 NidBULEHHST €QOEKMUBHOCMI CMUCKaHHS.

Haykoea Hoeu3Ha rionisicac 8 3HaxXOOXEeHHI 3aKOHOMIpHOCMeU MiX an2opummamu, U0 3acmoCOo8yHMbCS,
ma KoegpiyieHmamu cmucHeHHs1 daHux reeHoz2o ¢hopmamy. Brnepwe obpobrneHo ma cucmemamu3oeaHo OaHi
PO 8EITUKY KifbKICMb PI3HUX aneopummie CmUCHEeHHs GaHuX, siKk caMoCcmiliHUX, mak I makux, wo cknadarombcs
3 jHWux. Y pesynsmami ompumaHo 0aHi npo MemoOu CMUCHEHHS 0aHuX, Wo Halkpauye nioxo0simb Orisi CMUCKaHHS
306paxeHb, iIHMEPHEM-CMOPIHOK, 8UXIOHO20 KOOy mouwo.

Memodonozis docnidxeHHs 6azyembCsi Ha 8UMIPHOBAHHI KilbKOX Xapakmepucmuk opueiHaibHUX ma CmUCHEHUX
¢hatinie, a makox pobomu aneopummie i3 nodanbWwum criecmasneHHaM yux 0aHux. Tak, ¢halnu Moxyms bymu
pO3pi3HeHi 3a ¢chopmamom ma iHhopMayiliHOK eHMPOonieto, a ricns CMUCHEHHS MOXHa 3Halimu KoeiuieHm
CMUCHEHHS, W0 Xapakmepusye eghekmusHicmb pobomu anzopummie. B docnidxeHHi bepyms ydacmb yHigepcarbHi
aneopummu, wo crpulmaroms byOb-sKy iHpopmauito SK nesHy nocnaidosHicms 6aumig. TakumM HYUHOM, SOHU
MOoXymb 6ymu 3acmocoeaHi 00 pi3HuUX chopmamie ¢halinie, 30kpemMa makux, Wo Halvyacmiuie 8UKOpUCMO8YHMbCS
8 po3modineHux cucmemax 36epieaHHs OaHUXx.

BucHoeok micmumb npakmuyHi pekomMeHOauii no 3acmocysaHHI0 an2opummie CmuUcHeHHs OaHux. [aHi,
ompumaHi 8 xo0i 0ocrniOXeHHs, MOXymb Oymu gukopucmani Onsi iHmeapysaHHsl 8 IHWIi rpoepamHi npodykmu,
abo rnodarnbwo2o aHari3sy.

Knro4oei cnoea: cmucHeHHs1 0aHUX, aneopumm, eHmporiisi, npoepamHa cucmema, C#, ASPNET.

Introduction. In the modern world, the amount Topicality of the research. The main
of new data is constantly growing. Accordingly, the  characteristic of data compression algorithms is
costs of storing and transporting such volumes of  the compression ratio — the ratio of the original
data are also growing. Modern data compression  data’s size to the data’s size after the algorithm has
algorithms include entropy (frequency), dictionary,  done its work. If the algorithm works with a ratio of
and context mixing. Often, algorithms complement 1, it does not perform valuable work since the data
each other, significantly improving compression  volume does not decrease; that is, compression is
ratios. One of the well-known examples of this is  notperformed. Such property is native to algorithms
Deflate, which includes two others — LZ77 and the  such as the Burroughs-Wheeler transform, which
optimal Huffman code. is not a compression algorithm but can be used as

Adata compression algorithmis adataencoding  an intermediate stage in data preparation for other
that reduces their occupied volume. Usually, such  algorithms. If the algorithm works with a coefficient
transformations are reversible; thatis, they havean less than 1, it performs a disservice; instead of
inverse action called recovery or decompression,  compressing, it actually increases the volume of
which consists of partial or complete recovery of  input data.
the original data. Data compression is based on The topicality of developing and improving data
reducing redundancy, so entropy coding encodes  compression algorithms lies, first of all, in the fact
symbols that occur more often in the data into that stronger data compression with the ability to
shorter sequences, usually less than 8 bits. The  accurately (using lossless compression algorithms)
relevance of developing and improving data restore the original information allows reducing the
compression algorithms is that more substantial  costs of their storage, transportation and processing.
data compression with the ability to accurately = Therefore, there are competitions like Hutter Prize
(using lossless compression algorithms) restorethe  or Large Text Compression Benchmark.
original information allows for reducing the costs of Literature review. To determine the
their storage, transportation and processing. effectiveness of lossless data compression
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algorithms, the compression ratio is determined —
the ratio of the initial size of uncompressed data to
the size of the data at the output of the algorithm (1).

VO
- (1)

compr

k:

The mean entropy of the message is calculated
using Shannon entropy.
H(X):_szi'logz i (2)
i=1
where H(X) is the average entropy of the message;
K is a constant coefficient that determines the
units of measurement of entropy, and its change is
equivalent to a change in the base of the logarithm;
p, is the frequency of occurrence of the i-th symbol
in the message; n is the power of the dictionary,
which is actually equal to the number of symbols in
it (Shannon, 1948, p. 12).

N i.i.d. random variables each with entropy H(X)
can be compressed into more than N H(X) bits
with negligible risk of information loss, as N — «;
conversely if they are compressed into fewer than
N H(X) bits it is virtually certain that information will
be lost (McKay, 2003, p. 92). This enables lossless
compression algorithms, which reduce this
redundancy and assign new codes to the symbols,
according to the amount of information they carry.

Although lossless data compression cannot
bypass boundaries set by information entropy,
new ways of finding the best suitable encoding
methods are discovered almost every year.
Feature-based data compression concept is
becoming more popular nowadays, where features
means significant pieces of information, important
for a human or a machine (Podgorelec, 2024). The
methods that involve context modeling for symbols
or larger entities prediction are gaining popularity,
too, if compression ratio is more important than
speed (Mohideen, 2021). The context modeling
concept developed into using machine learning
(Lopes, 2022).

For distributed platforms, where the data is
anticipated to be accessed much more than
uploaded, speed of decompression becomes
much more important than the compression
ratio. Several algorithms exist to achieve fast
decompression (Collet, 2011).

The aim of the research. Based on the analysis
of the subject area, the following tasks can be set
for solving during the research:

— investigate lossless compression algorithms
for various types of data, in particular text, video,
static images, etc., and their combinations;

— determine the criteria for comparing the
algorithms under study and use them to compare
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the effectiveness of applying compression methods
to certain types of files;

— using the obtained data, develop an
application that will select the necessary
compression algorithm for the data provided by the
user.

This set of tasks aims to improve understanding
of data compression methods. During their solution
and additional experiments, different algorithms
and their combinations will be compared, which will
allow assessing the usefulness of both newer and
older data compression methods. Therefore, the
work aims to investigate using data compression
algorithms with different types of information,
formats or information entropy.

Overview of data compression methods.
The main requirement for lossless compression
algorithms, unlike lossy ones, is the ability to
fully recover the data that has been compressed.
Accordingly, each algorithm has its own mechanism
for ensuring full reversibility of compression
operations.

The standard LZ77 algorithm encodes repeated
sequences as two numbers — offset and match
length. For each sequence of symbols x[i]..x[/],
where j, j — indices of the symbols in a message,
the algorithm checks whether such sequence
is present in the buffer. If a match is found, then
sequence x[i]..x[j + 1] is checked, until for some
sequence x[i]..x[j + 1] the match is no longer
found. If no match is found, the algorithm finds the
offset from the last index of the sliding buffer to the
first index of the sequence ¢, and match length /.
After this, the sequence x[i]..x[j + 1] is written to
the end of the buffer, and the three values c, | and
x[j] are written to the match (Ziv, Lempel, 1977).

The decoding of the values is performed
backwards. For each (c, I, x[j]) write to the buffer
the sequence that starts on the ¢ index from the
end and lasts / symbols, and write x[/] to the end
of the buffer. If | > ¢, the sequence is repeated
cyclically.

Figures 1 depicts the processes of encoding of
a sample text “abcabdabdabf”.

Huffman algorithm, unlike LZ77, is an entropy
compression method. It consists of two parts:
constructing an optimal code tree and generating
the encoded sequence. In a non-adaptive
algorithm for constructing an optimal code tree,
it is necessary to calculate the frequency of each
symbol and, using the obtained table (dictionary) of
frequencies and taking the symbols as the leaves
of the tree, apply the following algorithm:

1. selecttwo nodes with the lowest frequencies,
which are taken as their «weight» and create a
parent node from them, the weight of which will
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Fig. 1. LZ77 Encoding process

be the sum of the weights of the selected child
elements;

2. for the left and right arcs from the parent
element to the children, 0 and 1 are assigned;

3. steps 1-2 are repeated, and now the
newly created node will be in the list of nodes
free for selection, and its child elements become
unavailable for selection;

4. when only one free node remains in the tree,
the tree is considered complete, and this node is
its root.

Thus, the tree is built from the leaves to the
root. Figure 2 shows an example of building a tree
for a certain symbol frequency table.

After building the tree, we get a scheme by
which any symbol from the dictionary is encoded.
To encode a message, the algorithm traverses

the tree from the corresponding leaf to the root
and, at each transition to the code, adds 1 or
0, respectively. Having reached the root, the
algorithm reverses the sequence, obtaining the
desired code.

For decoding using a non-adaptive algorithm, it
is necessary to have data on symbol frequencies
in order to build a tree similar to that presented in
Figure 3. Then, having the compressed data and
taking into account that all codes are prefixes, we
can apply the following algorithm:

1. take the next bit from the sequence and add
it to the buffer;

2. if the value in the buffer matches the symbol
code, write this symbol,

3. repeat until the end of the encoded message
is reached.

Fig. 2. Huffman tree
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Compress | Decompress
Bbibepute daiin | logo.bmp
Calculated entropy: 5.472543483812589

Algorithm Expected compression time, ms

Brotli (Optimal) 2

Brotli (Smallest size) 11
Brotli (Fastest) 2
System.|0.Compression.Deflate 2

Huffman 21

Expected decompression time, ms

2

Expected rate

1.3360613146271758 Compress

1.3357142857142856 Compress

1.3276106880082612 Compress

1.2973007063572148 Compress

1.2596448254745867 Compress

Fig. 3. User interface with the demonstration of the research results

Deflate compression method combines LZ77
and Huffman compression to achieve higher
compression ratios (Deutsch, 1996). A typical
Deflate stream consists of blocks, each preceded
by a three-bit header that specifies whether the
block is the last one and the encoding type. Thus,
the first bit, set to zero, indicates that the block is
not the last one, and vice versa, a one indicates
that the block in question is the last one in the
stream. The next two bits of the block specify the
type of Huffman encoding that was applied to the
data in it.

Deflate allows to combine the dictionary LZ77
algorithm that removes the repetitions in blocks,
and then compress the result with Huffman optimal
encoding. It ensures that the data with nearly equal
distribution of symbols will still be compressed.

Brotli comes as a program with a static
dictionary containing over 10,000 words and
terms from English and some other languages
and their transformations, determined by prefixes
and suffixes (Alakuijala, 2016). The algorithm uses
them to recognize points in the code and does
not read the entire code, instead it finds points
of interest in text, determines a certain term from
them and moves on.

By using the dictionary, Brotli has significantly
improved Gzip compression, which does not use
it. Brotli’'s work is also based on the use of LZ77
and optimal Huffman coding, but Brotli also uses a
context modeling algorithm. In total, the algorithm
has four context determination modes available to
it, which determine its identifier. They are based
on the last two bytes of the stream p1 and p2. At
the beginning of the stream, these two bytes are
initialized as zero. The context is determined by six
least or most significant bits of p1 (LSB6, MSB6),
or a composite function (UTF8, Signed).

Concerning context modelling method, the PPM
(Prediction by Partial Matching) algorithm is a
special case of it. Its basic idea is to find the context
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of the current symbol from some previous ones.
The model does not perform any compression
but only predicts the value of the symbol being
compressed using entropy compression methods
such as optimal Huffman or arithmetic coding.

Usually, the length of the context used is limited.
Itis denoted as n, and the n-order model is denoted
as PPM(n). If the context of n symbols cannot
be predicted, then a context of n — 1 symbols is
used. The transitions are recursive until a context
is found or until n becomes 0. PPM represents a
variant of the shuffling strategy, where probability
estimates made using contexts of different lengths
are combined into a total probability (Cleary, 1997).
Then, this estimate is encoded by some entropy
encoder, usually optimal Huffman coding or
arithmetic. Compression occurs at the stage of
using entropy coding.

Testing of combined compression
algorithms. The value of the average entropy is
maximum for messages in which the frequencies
of occurrence of all symbols from the dictionary
are equal. By the formula (3),

max(H) = —n-1

©)

1 1
~Iong= —Iogzﬁ,

where max(H) is the maximum average message
entropy for a dictionary of n symbols, which all

occur with frequency of %

For messages using more than one character,
the minimum average entropy can be obtained
when the difference between the character
frequencies is the largest. Assuming that each
character from the dictionary occurs at least once
in the message and the message is of constant
length, we have the highest possible frequency of
a single character:

d-1_n-d+1
n n '

max(p)=1 n>d,

(4)
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where max(p) is the maximum possible symbol
frequency, d is the dictionary power, n is the
message length.

Formulas (3) and (4) are used for generating
test data. Balancing the dictionary volume and
frequencies of symbols, we can achieve the
desired entropy for the test data. Also, real files
with different formats can be added to compare the
testing with real data.

A separate application was created for the
research, which includes methods for data
management and implementation of compression
algorithms and libraries. In particular, for
algorithms such as Deflate and Brotli, the System.
10.Compression library was used. For others,
separate open-source implementations were used
(PPM, LZ77). Huffman coding was implemented
independently using.NET 8 and C# (Ding, 2024).

For each entropy value from 0 to 9, data
of different sizes was generated, defined by
categories from 100 bytes to 1 megabyte. The
file size may differ from the size declared in the
category by no more than 6 % for data of 100 bytes
and no more than 2 % for others, except for the
exceptions described below.

According to formula (3), the maximum average
message entropy achieved using 100 bytes is

—log,
achieve entropy close to 7 and 8, respectively,
110 and 250 bytes are used, which gives the

1 .
—0z6,64 bits per symbol. Therefore, to

1
average message entropy —Iogzmz6.78 and

1 . .
—Iogzgzz% bits per symbol, respectively.

Files of other sizes are generated without changes
using the same symbol rates.

Results. To demonstrate the results
obtained from the experiments, an application
was developed that allows the analysis of files
provided by the user and the determination of
the algorithms whose application will give the
highest compression ratios. On the client side,
the average entropy of the data he provided, the

file size and its extension are calculated and sent
to the server. The algorithm on the server side
selects algorithms with the highest compression
ratios for such a file, after which the client part
offers the user to compress the provided file with
one of these algorithms. The compressed file can
also be restored using another interface.

To implement the server part ASP.NET and
the C# programming language were used. Data
is obtained from a previously created MS SQL
database, communication occurs using the Entity
Framework ORM. The client part was developed
using React using the Axios library to process GET
and POST requests. Figure 3 shows the example
of the user interface of the demonstration program.

The system developed during the research will
help users find the compression algorithm that is
fast enough and gives the optimal compression
ratio. It is also open for future enhancements like
adding new properties or algorithms.

Conclusions. Despite limits set by fundamental
theory of information, lossless compression
remains topical. The methods that combine old
and well-tried compression algorithms with state-
of-the-art concepts like feature-based coding or
prediction algorithms based on context modeling or
machine learning gained popularity for combining
high compression speed and ratios.

This paper represents the methods of
data compression and the methods of their
categorization. The results are used in the
demonstration program to predict the compression
ratio and time based on previous experiments.
The predictions made by the algorithm are precise
in most of the cases, which proves that mean
entropy of a message is the main concept in its
compression.

Future researches of this topic could be
dedicated to the algorithms utilizing context
modeling and machine learning. Near-lossless
compression remains topical, too, especially
combined with lossless compression methods and
utilized on images, audio etc (Jeromel, 2019).
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