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POST-TRAIN ADAPTIVE U-NET FOR IMAGE SEGMENTATION

Many fields benefit from fast and accurate image segmentation. Convolutional neural networks show the best
accuracy solving the task. Applications include medical or satellite imaging, autonomous driving, etc. Typical neural
network architectures used for image segmentation are expected to be fully configured before the training procedure
starts. To change the network architecture additional training steps are required. This is quite limiting as the network
might not only be executed on a powerful server, but also on a mobile or edge device. Adaptive neural networks offer
a solution to the problem by allowing certain adaptivity after the training process is complete.

In this work for the first time, we apply Post-Train Adaptive (PTA) approach to the task of image segmenta-
tion. We introduce U-Net+PTA neural network, which can be trained once, and then adapted to different device
performance categories. The two key components of the approach are PTA blocks and PTA-sampling training
strategy. The PTA blocks were added into the U-Net neural network with MobileNetV2 backbone. The post-train
configuration can be done at runtime on any inference device including, but not limited to mobile devices. In addition
to post-train neural network configuration, the PTA approach has allowed to improve image segmentation quality
(Dice score) on the CamVid dataset. The final trained model can be switched at runtime between 6 PTA configu-
rations. These configurations differ by inference time and quality. Importantly, all of the configurations have better
quality than the original U-Net (No PTA) model. The possible future research direction is to expand the inference
time difference between heavy and light PTA configurations to allow a single trained PTA-based network to target
even more device performance categories.

Key words: Adaptive convolutional neural networks, image segmentation, inference speed, mobile computing,
edge computing, computer vision.
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AOANTUBHA NMicnA HABYAHHA MEPEXA U-NET
onAa 3A0AYI CETMEHTALII 3S0BPAXEHbDb

Gacamo 3acmocyHkie nompebytoms WeUdKy ma Mmo4yHy ceameHmauii 306paxeHb, 0e 320pMKO8i HEUPOHHI
Mepexi nokasyroms HaliKpawly moyHiCmb 8UPIWEHHs 3adadi. 3acmocysaHHs 8KnoHarms MeduyHi abo cynymHu-
Ko8i 30bpakeHHs1, asmoHOMHe 600iHHS mouwjo. 3aszsuyali HeobxiOHO, w06 apximekmypu HeUPOHHUX MEepPEX,
sKi guKkopucmosyrombcsi 05151 ceeMeHmauii 30bpaxeHb, bynu nosHiCM HamawmoesaHi o noyamky npouedypu
HaeyaHHs. [ns amiHu apximekmypu mepexi HeobxiOHi dodamkosi imepauii Hag4aHHS. Lle € 06MeXeHHSIM, OCKINbKU
Mepexa Moxe rpayroeamu He fuwe Ha nomyxHomy cepeepi, a U Ha MobiribHOMY 4u KpaliogoMy rnipucmpoi. Adarn-
mueHi HeUPOHHI Mepexi MPOroHytoMb 8upieHHs npobrnemu, A0360s5H4U nesHy adanmau,ito Micrisi 3a8epueHHs
npouyecy HagyaHHs.

Y uiti pobomi enepwe 3acmocosaHo nioxid Post-Train Adaptive (PTA) do 3adayi ceameHmauii 306paxeHs.
lpedcmaesneHo Helipomepexy U-Net+PTA, sky MoxHa 0OuH pa3 Has4umu, a nomim adanmyseamu 00 npucmpoig
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i3 pi3HOK 064UCH08aNbHOK WEUOKICMI0. [Jeoma Ki1r4o8uMu KoMnoHeHmamu nioxody € bnoku PTA ma cmpameais
Has4aHHSs1 i3 sunadkosoro 8ubipkor PTA koHgbizypauit. brioku PTA 6yno dodaHo 8 Helipomepexy U-Net 3 mepexero
kodyearnbHukom MobileNetV2. OmpumaHy Mepexy MOXHa KOHbieypysamu ricns Hag4aHHs Ha OyOb-sKOMYy rpu-
Cmpoi, 8KmoYarodu MobinbHi. Takox nidxid PTA do3eonue nokpawumu skicms ceameHmauii 30bpaxeHHs 8 Habopi
OdaHux CamVid eidnogidHo do mempuku Dice. HagyeHy modernb MoxHa nepemukamu MiX 6 KoHgbieypauiamu PTA
Haeimb nid Yyac 8UKOHaHHs. Lli koHiaypauii 8i0pisHsIrombCs Yacom pobomu ma sikicmr. Baxiueo, w0 6ci KOH-
ohicypauii matomb Kpalwy sikicmb, HiX opuziHanbHa modesns U-Net (6e3 PTA). Moxnusum HanpsMok nodanbuiux
docnidxeHb € 36inbWEHHS Pi3HUUJ 8 Yaci BUKOHaHHSI MK 8aXKKOK ma 51e2Kor KOoHieypauismu PTA brokie, w06
0038051UMuU O00HIl Has4eHil Mepexi Ha ocHosi PTA Hayinoeamucsi Ha we b6inbwly KiflbKicmb mnpucmpoig i3 pisHo

064UCIH8aNbHOK MOMYXHICMIO.

Knrouoei cnoea: adanmusHi 320pmKo8i HelipOHHI Mepexi, ceameHmau,ist 306paxxeHb, Yac 8UKOHaHHS, MOOBINbHI

obyucneHHs, Kpaliogi 064YUCIEHHS, KOMTtomepHUU 3ip.

Introduction. Many fields benefit from fast
and accurate image segmentation. Convolutional
neural networks show the best accuracy
solving the task. Applications include medical
imaging (Ronneberger et al., 2015), autonomous
driving (Brostow et al., 2009), satellite ima-
ging (Hnatushenko et al., 2021), etc. Typical neural
network architectures used for image segmen-
tation are expected to be fully configured before
the training procedure starts. To change the
network architecture additional training steps
are required. This is quite limiting as the network
might not only be executed on a powerful server,
but also on a mobile or edge device (Khabarlak,
2022a; Khabarlak & Koriashkina, 2022). Training
separate networks for each device category is
quite inefficient. Ideally, the network configuration
change should be performed dynamically at
runtime.

Adaptive neural networks offer a solution to
the problem by allowing certain adaptivity after
the training process is complete. Successful
approaches to building adaptive neural networks
have been proposed for Recurrent Neural
Networks in (Graves, 2016), Convolutional Neural
Networks in (Figurnov et al., 2017; Khabarlak,
2022b, 2022c). In particular, we see the Post-
Train Adaptive approach proposed in (Khabarlak,
2022b) as an easy and effective way for the neural
network adaptivity. Still the approach was only
applied to the image classification task.

In this work we present U-Net+PTA network
for the image segmentation task. We base upon
U-Net (Ronneberger et al., 2015) architecture with
MobileNetV2 (Sandler et al.,, 2018) backbone.
To enable post-train adaptivity of the network,
we apply the Post-Train Adaptive approach
from (Khabarlak, 2022b).

To summarize, our main contributions are as
follows:

1. We introduce U-Net+PTA neural network,
which can be trained once, and then adapted to
devices of different performance categories.

2. We demonstrate that U-Net+PTA not only
improves inference speed over the U-Net, but
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also shows better Dice__
et al., 2009) dataset.

Literature Overview. Many fields benefit from
fast and accurate image segmentation. To solve
the segmentation task with high quality, the input
image should be considered at multiple scales. This
can be done through feature pyramid network (Lin
et al., 2017), U-Net-like architecture (Ronneberger
et al., 2015) or feature exchange between multiple
scales (Sun et al.,, 2019). Such architectures
are computationally intensive. In the meantime,
segmentation algorithms are often required to
run on desktop as well as mobile devices, while
current architectures are mostly suited for desktop
applications only.

Typically, neural network architectures made
tosolve the segmentationtask are configured before
the training process starts. Different backbones
can be used in the segmentation models to
change their quality and inference speed, like
ResNet (He et al., 2016), MobileNetV2 (Sandler et
al.,2018), MobileNetV3 (Howardetal.,2019), SeNet
(Hu et al., 2018) or others. Still, these backbones
cannot be additionally configured after the
training process is complete, which limits their
applicability to devices with different computa-
tional resources.

Dynamic neural networks is a promising
research direction (Figurnov et al., 2017; Graves,
2016; Khabarlak, 2022b, 2022c). The goal is to
allow the neural network to change its archite-
cture depending on expected inference time
or input data complexity. However, in many
cases additional adaptivity comes at increased
computational cost. Thus, inference time
might not be smaller on average than that of a
conventional static neural network. In contrast,
in (Khabarlak, 2022b) Post-Train Adaptive
approach was presented, which via a simple
MobileNetV2 modification has allowed to reduce
actual inference time. Importantly, the approach
allows to reconfigure the neural network after
the training process is complete. But, to the best
of our knowledge, the approach has only been

on the CamVid (Brostow
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applied to the image classification task, namely
face anti-spoofing. In this work we adapt the Post-
Train Adaptive approach to the task of image
segmentation.

Materials and Methods. We base on the
U-Net architecture with MobileNetV2 backbone.
To make the constructed neural network dynamic,
we use the approach proposed in (Khabarlak,
2022b), and add 3 Post-Train Adaptive (PTA)
blocks to the network (as is shown in Fig. 1). In
this work we include PTA blocks only in the U-Net

encoder (backbone), leaving the decoder part
intact.

A single PTA block has 2 branches:

— Light branch. Contains a single Inverted
Residual block;

— Heavy branch. Contains two
Residual blocks connected sequentially.

Each block can be dynamically configured to
infer either branch exclusively, or both branches
at the same time averaging the resulting feature
maps.

Inverted

I Convolutional block

I Inverted Residual block

Post-Train Adaptive block

| *i

L - . =
MobileNetV2 with PTA

_

Figure 1. The proposed U-Net+PTA architecture for the image segmentation task.
MobileNetV2 architecture with added PTA blocks is used as an encoder.
Convolutional blocks are shown in blue, Inverted Residual in green,
Post-Train Adaptive (PTA) in orange

To enable dynamic branch selection in the
PTA block without retraining, a special PTA-
sampling strategy is applied at training time.
Specifically, several possible block configurations
are selected randomly during the training
procedure following the distribution shown in
Table 1. All PTA block configurations that are
possible, but not presented in the table are
expected to be never sampled. Note, that
configuration where both blocks are enabled
at the same time is also never sampled.

Table 1.
U-Net+PTA train-time configuration sampling.
Sampling strategy follows the original
strategy from (Khabarlak, 2022b).

PTA Configuration Sampling Probability
[Heavy, Heavy, Heavy] 0.45
[Light, Heavy, Heavy] 0.15
[Heavy, Light, Heavy] 0.15
[Heavy, Heavy, Light] 0.15
[Light, Light, Light] 0.10
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To train the neural network, we use the
Dice ., that has shown good segmentation
training results, and to measure the resulting
model quality, we use Dice__ (Milletari et al.,
2016):

2Y 'pg e
Diceloss :1_ szl N 5 s (1)
Zi Pi +Zi g *e
25 g,
Dice_ = Zi P&~ e

score ZINPZZ +21Ng12 +€’ (2)

where p, is the predicted probability distribution,
g, is the ground true one-hot vector, N is the
number of classes to distinguish between, ¢ is
a small constant.

Experiments. To ftrain and evaluate the
model we use the widely known CamVid (Brostow
et al., 2009) dataset. It contains images of
size 480x360 pixels. The dataset is split into
train (367 images), validation (101 images) and
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test (233 images) subsets. All of the subsets
have segmentation masks available of the same
480x360 size. The task is to learn the network
to segment the images into one of the following
classes: sky, building, pole, road, pavement, tree,
sign symbol, fence, car, pedestrian, bicyclist,
unlabeled.

For training and testing we resize the images
into 256x256 size. To retain the original width to
height ratio, the images are letterboxed. During
training random crop and color jitter augmentations
are used. Both U-Net and U-Net+PTA networks
are trained for 600 epochs from scratch. No neural
network pre-training is performed. Batch size is
set to 8. Adam (Kingma & Ba, 2015) with the
learning rate of =10 is used as an optimizer.
The results are reported on the test set. NVIDIA
GTX 1050Ti is used to train and test the model.
In addition, we report inference time for a batch
of 8 items. To ensure accurate time measure-
ments, timings are averaged over 1000 batches.
95 % confidence interval is given for each
measurement.

Results. In Table 2 we show model perfor-
mance on the test set for the original U-Net model
(denoted as No PTA) and the new U-Net+PTA
model (denoted as PTA-*), where * is the PTA
block configuration for inference. The best result
is shown in red; the second best is in blue. As is
clearly seen, all PTA-based configurations show
better performance that the original U-Net. The
best results are obtained by PTA-HLH, followed
by PTA-BBB. Note, all PTA configurations have
been obtained from a single model, trained only
once. Thanks to the adaptive architecture, the
exact configuration can be selected after the
training is complete. Interestingly, PTA-HHH,
which is equivalent in architecture to the

No PTA model, but has been trained with PTA-
sampling strategy is also better than No PTA
configuration.
Table 2.
Dice_ ., comparison for the U-Net+PTA model
in the segmentation task on the CamVid
dataset. Higher Dice__ _ is better. The best
configuration is highlighted in red; the second
best is in blue. All Post-Train Adaptive (PTA)
configurations show better quality than the
original U-Net with MobileNetV2 backbone.

Configuration Dice___ (1)
No PTA 0.8583
PTA-HHH 0.8666
PTA-LHH 0.8659
PTA-HLH 0.8670
PTA-HHL 0.8660
PTA-LLL 0.8647
PTA-BBB 0.8667

Table 3 shows model complexity and inference
time comparison of the U-Net and the newly
proposed U-Net+PTA models. The best result
is shown in red; the second best is in blue. We
show post-train model configuration, the number
of model parameters, the number of multiplication
and addition operations for inference, absolute
and relative inference time. Relative time is
computed with respect to the No PTA baseline.
Inference time on actual device has some
fluctuation due to GPU frequency change or
sporadic system activity. To ensure accurate and
consistent measurements, the inference time
results are averaged across 1,000 measure-
ments. Additionally, 95 % confidence interval
is given. As can be seen, PTA-based models
that have one or more Light branches enabled
have faster than No PTA baseline inference.

Table 3.

Model complexity and inference time comparison of U-Net vs U-Net+PTA models. The following
information is shown: post-train model configuration, the number of model parameters, the
number of multiplication and addition operations for the inference, absolute and relative infe-
rence. Relative time is computed with respect to the No PTA model. The best result is shown in
red; the second best is in blue. PTA-based models with Light branch show faster inference time.

Config # Params Multiply-Adds Inference Time Relative Impr.
(LM ({, Mops.) (L, ms) (% 1)
No PTA 6.63 871.80 81.3740 .14 100.00
PTA-HHH 6.63 871.80 81.16+0.13 99.75
PTA-LHH 6.58 868.58 80.21+0.08 98.58
PTA-HLH 6.51 864.16 79.78 + 0.08 98.05
PTA-HHL 6.31 866.65 79.89+ 0.08 98.19
PTA-LLL 6.14 855.49 78.82+ 0.09 96.86
PTA-BBB 7.12 888.12 83.79+ 0.09 102.98
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In Table 4 we show total training time and
the best Dice___ for the No PTA and U-Net+PTA
models. The best Dice_ _ is selected from all
possible PTA configurations from a single training
pass. Both models were trained 600 epochs. As
can be seen, higher Dice_  for the PTA-based
model is achieved with slightly faster model
training.

Table 4.
Training time and the best final score
comparison for the U-Net and U-Net+PTA
models. Higher Dice__ _for the PTA-based

model is achieved with slightly
faster model training.

Config Total Training | Best Dice____ (1)
Time (| , Min) seere
U-Net 161.6 0.8583
U-Net+PTA | 158.6 0.8670

Discussion. The Post-Train Adaptive method
has been originally introduced for the task of
face anti-spoofing in (Khabarlak, 2022b). In
this work we have applied it to a different
computer vision task, namely image segmentation.
We based our approach on the U-Net neural
network with the MobileNetV2 backbone. By
adding PTA blocks to the U-Net architecture
and following the PTA sampling training strategy,
we have been able to successfully train the

neural network. The resulting network can be
trained once and reconfigured later. As can be
seen from the Table 2, all of the PTA configurations
show superior quality when compared to the
U-Net with MobileNetV2 (No PTA). The best
improvement is achieved by PTA-HLH (Dice__
improvement of 0.0087), followed by PTA-BBB
(+ 0.0084). The PTA-HHH configuration that is
equivalent in architecture to the original No PTA
model is also better than the No PTA configura-
tion, which shows the benefit of the PTA-
sampling training strategy. We also note that even
the lightest PTA-LLL configuration is better than
No PTA baseline (+ 0.0064).

The PTA-LLL configuration is the fastest
configuration as is shown in Table 3. PTA-LLL
model shows better Dice___and is 3.14 % faster.
Also, the heaviest PTA-BBB model is only 2.98 %
slower, while offering 0.0084 higher Dice__ . PTA-
HLH has good speed and the best quality making
it the best configuration in terms of speed to
quality ratio.

We also note that the benefit of using 3 PTA
blocks in the U-Net with MobileNetV2 backbone
is smaller, than it was in the original PTA work. This
can be explained by the fact that overall U-Net
with MobileNetV2 backbone is a much larger
model than the plain MobileNetV2 for classifi-
cation as can be seen from Table 5.

Table 5.

Comparison of the number of model parameters and multiply-additions to perform classification
(Class.) and segmentation (Segm.) tasks. Note, that for segmentation the baseline No PTA model
is significantly larger.

Model Task # Params (M) Multiply-Adds (Mops.)
MobileNetV2 No PTA Class. 2.23 104.15
MobileNetV2 PTA-LLL Class. 1.73 87.84
U-Net No PTA Segm. 6.63 871.80
U-Net PTA-LLL Segm. 6.14 855.49

The PTA training procedure is easy to integ-
rate into existing pipelines. It offers the benefits
of extra model configuration after the training
is complete, higher model quality, and lower
inference time. In addition to that, overall
U-Net+PTA training time is no larger than that
of a simple U-Net model as can be seen from
Table 4.

Conclusions. In this work Post-Train
Adaptive approach has been first applied to
the task of image segmentation. The PTA
approach has made it possible to reconfigure
the architecture of the designed neural network
after the training process has been complete.
The two key components of the approach
are PTA blocks and PTA-sampling training

strategy. The PTA blocks were added into the
U-Net neural network with MobileNetV2 backbone.
The post-train configuration can be done at
runtime on any inference device including, but
not limited to mobile devices.

In addition to post-train neural network
configuration, the PTA approach has allowed to
improve image segmentation quality (Dice on
the CamVid dataset.

The final trained model can be switched at
runtime between 6 PTA configurations. These
configurations differ by inference time and
quality. The best speed is offered by PTA-LLL
configuration, that is faster and has higher
quality than No PTA baseline. The best quality
is achieved by PTA-HLH configuration with

score)
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better than No PTA inference speed making The possible future research direction is to
the best configuration in term of speed to expand the inference time difference between
quality ratio. Importantly, all of the configura- heavy and light configurations to allow a single
tions have better quality than the original U-Net  trained PTA-based network to target even more
(No PTA) model. device performance categories.
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