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POST-TRAIN ADAPTIVE U-NET FOR IMAGE SEGMENTATION

Many fields benefit from fast and accurate image segmentation. Convolutional neural networks show the best 
accuracy solving the task. Applications include medical or satellite imaging, autonomous driving, etc. Typical neural 
network architectures used for image segmentation are expected to be fully configured before the training procedure 
starts. To change the network architecture additional training steps are required. This is quite limiting as the network 
might not only be executed on a powerful server, but also on a mobile or edge device. Adaptive neural networks offer 
a solution to the problem by allowing certain adaptivity after the training process is complete.

In this work for the first time, we apply Post-Train Adaptive (PTA) approach to the task of image segmenta-
tion. We introduce U-Net+PTA neural network, which can be trained once, and then adapted to different device  
performance categories. The two key components of the approach are PTA blocks and PTA-sampling training  
strategy. The PTA blocks were added into the U-Net neural network with MobileNetV2 backbone. The post-train  
configuration can be done at runtime on any inference device including, but not limited to mobile devices. In addition 
to post-train neural network configuration, the PTA approach has allowed to improve image segmentation quality 
(Dice score) on the CamVid dataset. The final trained model can be switched at runtime between 6 PTA configu-
rations. These configurations differ by inference time and quality. Importantly, all of the configurations have better 
quality than the original U-Net (No PTA) model. The possible future research direction is to expand the inference 
time difference between heavy and light PTA configurations to allow a single trained PTA-based network to target 
even more device performance categories.

Key words: Adaptive convolutional neural networks, image segmentation, inference speed, mobile computing, 
edge computing, computer vision.
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АДАПТИВНА ПІСЛЯ НАВЧАННЯ МЕРЕЖА U-NET  
ДЛЯ ЗАДАЧІ СЕГМЕНТАЦІЇ ЗОБРАЖЕНЬ

Багато застосунків потребують швидку та точну сегментації зображень, де згорткові нейронні  
мережі показують найкращу точність вирішення задачі. Застосування включають медичні або супутни- 
кові зображення, автономне водіння тощо. Зазвичай необхідно, щоб архітектури нейронних мереж,  
які використовуються для сегментації зображень, були повністю налаштовані до початку процедури 
навчання. Для зміни архітектури мережі необхідні додаткові ітерації навчання. Це є обмеженням, оскільки 
мережа може працювати не лише на потужному сервері, а й на мобільному чи крайовому пристрої. Адап-
тивні нейронні мережі пропонують вирішення проблеми, дозволяючи певну адаптацію після завершення 
процесу навчання.

У цій роботі вперше застосовано підхід Post-Train Adaptive (PTA) до задачі сегментації зображень. 
Представлено нейромережу U-Net+PTA, яку можна один раз навчити, а потім адаптувати до пристроїв 
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із різною обчислювальною швидкістю. Двома ключовими компонентами підходу є блоки PTA та стратегія 
навчання із випадковою вибіркою PTA конфігурацій. Блоки PTA було додано в нейромережу U-Net з мережею 
кодувальником MobileNetV2. Отриману мережу можна конфігурувати після навчання на будь-якому при-
строї, включаючи мобільні. Також підхід PTA дозволив покращити якість сегментації зображення в наборі 
даних CamVid відповідно до метрики Dice. Навчену модель можна перемикати між 6 конфігураціями PTA 
навіть під час виконання. Ці конфігурації відрізняються часом роботи та якістю. Важливо, що всі кон-
фігурації мають кращу якість, ніж оригінальна модель U-Net (без PTA). Можливим напрямок подальших 
досліджень є збільшення різниці в часі виконання між важкою та легкою конфігураціями PTA блоків, щоб 
дозволити одній навченій мережі на основі PTA націлюватися на ще більшу кількість пристроїв із різною 
обчислювальною потужністю.

Ключові слова: адаптивні згорткові нейронні мережі, сегментація зображень, час виконання, мобільні 
обчислення, крайові обчислення, комп’ютерний зір.

Introduction. Many fields benefit from fast 
and accurate image segmentation. Convolutional 
neural networks show the best accuracy 
solving the task. Applications include medical 
imaging  (Ronneberger et al., 2015), autonomous 
driving  (Brostow et al., 2009), satellite ima-
ging (Hnatushenko et al., 2021), etc. Typical neural 
network architectures used for image segmen-
tation are expected to be fully configured before 
the training procedure starts. To change the 
network architecture additional training steps 
are required. This is quite limiting as the network 
might not only be executed on a powerful server, 
but also on a mobile or edge device  (Khabarlak, 
2022a; Khabarlak & Koriashkina, 2022). Training 
separate networks for each device category is 
quite inefficient. Ideally, the network configuration 
change should be performed dynamically at 
runtime.

Adaptive neural networks offer a solution to 
the problem by allowing certain adaptivity after 
the training process is complete. Successful 
approaches to building adaptive neural networks 
have been proposed for Recurrent Neural 
Networks in (Graves, 2016), Convolutional Neural 
Networks in  (Figurnov et al., 2017; Khabarlak, 
2022b, 2022c). In particular, we see the Post-
Train Adaptive approach proposed in (Khabarlak, 
2022b) as an easy and effective way for the neural 
network adaptivity. Still the approach was only 
applied to the image classification task.

In this work we present U-Net+PTA network 
for the image segmentation task. We base upon 
U-Net (Ronneberger et al., 2015) architecture with 
MobileNetV2  (Sandler et al., 2018) backbone. 
To enable post-train adaptivity of the network, 
we apply the Post-Train Adaptive approach 
from (Khabarlak, 2022b).

To summarize, our main contributions are as 
follows:

1.	 We introduce U-Net+PTA neural network, 
which can be trained once, and then adapted to 
devices of different performance categories.

2.	 We demonstrate that U-Net+PTA not only 
improves inference speed over the U-Net, but  

also shows better Dicescore on the CamVid (Brostow 
et al., 2009) dataset.

Literature Overview. Many fields benefit from 
fast and accurate image segmentation. To solve 
the segmentation task with high quality, the input 
image should be considered at multiple scales. This 
can be done through feature pyramid network (Lin 
et al., 2017), U-Net-like architecture (Ronneberger 
et al., 2015) or feature exchange between multiple 
scales  (Sun et al., 2019). Such architectures 
are computationally intensive. In the meantime, 
segmentation algorithms are often required to 
run on desktop as well as mobile devices, while 
current architectures are mostly suited for desktop 
applications only.

Typically, neural network architectures made  
to solve the segmentation task are configured before 
the training process starts. Different backbones 
can be used in the segmentation models to  
change their quality and inference speed, like 
ResNet (He et al., 2016), MobileNetV2 (Sandler et 
al., 2018), MobileNetV3 (Howard et al., 2019), SeNet  
(Hu et al., 2018) or others. Still, these backbones 
cannot be additionally configured after the  
training process is complete, which limits their 
applicability to devices with different computa-
tional resources.

Dynamic neural networks is a promising 
research direction (Figurnov et al., 2017; Graves, 
2016; Khabarlak, 2022b, 2022c). The goal is to 
allow the neural network to change its archite- 
cture depending on expected inference time  
or input data complexity. However, in many 
cases additional adaptivity comes at increased 
computational cost. Thus, inference time 
might not be smaller on average than that of a 
conventional static neural network. In contrast, 
in  (Khabarlak, 2022b) Post-Train Adaptive 
approach was presented, which via a simple 
MobileNetV2 modification has allowed to reduce 
actual inference time. Importantly, the approach 
allows to reconfigure the neural network after 
the training process is complete. But, to the best 
of our knowledge, the approach has only been 
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applied to the image classification task, namely 
face anti-spoofing. In this work we adapt the Post-
Train Adaptive approach to the task of image 
segmentation.

Materials and Methods. We base on the  
U-Net architecture with MobileNetV2 backbone.  
To make the constructed neural network dynamic, 
we use the approach proposed in  (Khabarlak, 
2022b), and add 3 Post-Train Adaptive (PTA) 
blocks to the network (as is shown in Fig.  1). In 
this work we include PTA blocks only in the U-Net 

encoder (backbone), leaving the decoder part 
intact.

A single PTA block has 2 branches:
−	 Light branch. Contains a single Inverted 

Residual block;
−	 Heavy branch. Contains two Inverted 

Residual blocks connected sequentially.
Each block can be dynamically configured to 

infer either branch exclusively, or both branches 
at the same time averaging the resulting feature 
maps.

Figure 1. The proposed U-Net+PTA architecture for the image segmentation task. 
MobileNetV2 architecture with added PTA blocks is used as an encoder.  

Convolutional blocks are shown in blue, Inverted Residual in green,  
Post-Train Adaptive (PTA) in orange

To enable dynamic branch selection in the  
PTA block without retraining, a special PTA-
sampling strategy is applied at training time. 
Specifically, several possible block configurations 
are selected randomly during the training 
procedure following the distribution shown in 
Table 1. All PTA block configurations that are 
possible, but not presented in the table are  
expected to be never sampled. Note, that 
configuration where both blocks are enabled  
at the same time is also never sampled.

Table 1. 
U-Net+PTA train-time configuration sampling. 

Sampling strategy follows the original 
strategy from (Khabarlak, 2022b).

PTA Configuration Sampling Probability
[Heavy, Heavy, Heavy] 0.45
[Light, Heavy, Heavy] 0.15
[Heavy, Light, Heavy] 0.15
[Heavy, Heavy, Light] 0.15
[Light, Light, Light] 0.10

To train the neural network, we use the 
Diceloss  that has shown good segmentation  
training results, and to measure the resulting  
model quality, we use Dicescore(Milletari et al., 
2016):
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where ip  is the predicted probability distribution, 
ig  is the ground true one-hot vector, N  is the 

number of classes to distinguish between, є  is  
a small constant.

Experiments. To train and evaluate the  
model we use the widely known CamVid (Brostow 
et al., 2009) dataset. It contains images of  
size 480 360×  pixels. The dataset is split into 
train (367 images), validation (101 images) and 
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test (233 images) subsets. All of the subsets 
have segmentation masks available of the same 
480 360×  size. The task is to learn the network 
to segment the images into one of the following 
classes: sky, building, pole, road, pavement, tree, 
sign symbol, fence, car, pedestrian, bicyclist, 
unlabeled.

For training and testing we resize the images 
into 256 256×  size. To retain the original width to 
height ratio, the images are letterboxed. During 
training random crop and color jitter augmentations 
are used. Both U-Net and U-Net+PTA networks 
are trained for 600 epochs from scratch. No neural 
network pre-training is performed. Batch size is  
set to 8. Adam  (Kingma & Ba, 2015) with the 
learning rate of 310α −=  is used as an optimizer. 
The results are reported on the test set. NVIDIA 
GTX 1050Ti is used to train and test the model. 
In addition, we report inference time for a batch  
of 8 items. To ensure accurate time measure-
ments, timings are averaged over 1000 batches. 
95 % confidence interval is given for each 
measurement.

Results. In Table 2 we show model perfor- 
mance on the test set for the original U-Net model 
(denoted as No PTA) and the new U-Net+PTA 
model (denoted as PTA-*), where * is the PTA 
block configuration for inference. The best result 
is shown in red; the second best is in blue. As is 
clearly seen, all PTA-based configurations show 
better performance that the original U-Net. The 
best results are obtained by PTA-HLH, followed  
by PTA-BBB. Note, all PTA configurations have 
been obtained from a single model, trained only 
once. Thanks to the adaptive architecture, the 
exact configuration can be selected after the 
training is complete. Interestingly, PTA-HHH,  
which is equivalent in architecture to the  

No PTA model, but has been trained with PTA-
sampling strategy is also better than No PTA 
configuration.

Table 2. 
Dicescore comparison for the U-Net+PTA model 

in the segmentation task on the CamVid 
dataset. Higher Dicescore is better. The best 

configuration is highlighted in red; the second 
best is in blue. All Post-Train Adaptive (PTA) 
configurations show better quality than the 
original U-Net with MobileNetV2 backbone.

Configuration Dicescore ( ↑ )
No PTA 0.8583
PTA-HHH 0.8666
PTA-LHH 0.8659
PTA-HLH 0.8670
PTA-HHL 0.8660
PTA-LLL 0.8647
PTA-BBB 0.8667

Table 3 shows model complexity and inference 
time comparison of the U-Net and the newly 
proposed U-Net+PTA models. The best result 
is shown in red; the second best is in blue. We 
show post-train model configuration, the number 
of model parameters, the number of multiplication 
and addition operations for inference, absolute 
and relative inference time. Relative time is 
computed with respect to the No PTA baseline. 
Inference time on actual device has some 
fluctuation due to GPU frequency change or 
sporadic system activity. To ensure accurate and 
consistent measurements, the inference time 
results are averaged across 1,000 measure- 
ments. Additionally, 95 % confidence interval 
is given. As can be seen, PTA-based models 
that have one or more Light branches enabled  
have faster than No PTA baseline inference.

Table 3.
Model complexity and inference time comparison of U-Net vs U-Net+PTA models. The following 

information is shown: post-train model configuration, the number of model parameters, the 
number of multiplication and addition operations for the inference, absolute and relative infe-

rence. Relative time is computed with respect to the No PTA model. The best result is shown in 
red; the second best is in blue. PTA-based models with Light branch show faster inference time.

Config # Params
( ↓ , М)

Multiply-Adds
( ↓ , Mops.)

Inference Time
( ↓ , ms)

Relative Impr.
(%, ↓ )

No PTA 6.63 871.80 81.37 0± .14 100.00
PTA-HHH 6.63 871.80 81.16 ± 0.13 99.75
PTA-LHH 6.58 868.58 80.21 ± 0.08 98.58
PTA-HLH 6.51 864.16 79.78 ± 0.08 98.05
PTA-HHL 6.31 866.65 79.89 ± 0.08 98.19
PTA-LLL 6.14 855.49 78.82 ± 0.09 96.86
PTA-BBB 7.12 888.12 83.79 ± 0.09 102.98
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In Table 4 we show total training time and 
the best Dicescore for the No PTA and U-Net+PTA 
models. The best Dicescore is selected from all 
possible PTA configurations from a single training 
pass. Both models were trained 600 epochs. As 
can be seen, higher Dicescore for the PTA-based 
model is achieved with slightly faster model 
training.

Table 4. 
Training time and the best final score 

comparison for the U-Net and U-Net+PTA 
models. Higher Dicescore for the PTA-based 

model is achieved with slightly  
faster model training.

Config Total Training 
Time ( ↓ , Min)

Best Dicescore ( ↑ )

U-Net 161.6 0.8583
U-Net+PTA 158.6 0.8670

Discussion. The Post-Train Adaptive method 
has been originally introduced for the task of  
face anti-spoofing in  (Khabarlak, 2022b). In  
this work we have applied it to a different 
 computer vision task, namely image segmentation. 
We based our approach on the U-Net neural 
network with the MobileNetV2 backbone. By  
adding PTA blocks to the U-Net architecture  
and following the PTA sampling training strategy, 
we have been able to successfully train the  

neural network. The resulting network can be 
trained once and reconfigured later. As can be 
seen from the Table 2, all of the PTA configurations 
show superior quality when compared to the  
U-Net with MobileNetV2 (No PTA). The best 
improvement is achieved by PTA-HLH (Dicescore 
improvement of  0.0087), followed by PTA-BBB 
(+  0.0084). The PTA-HHH configuration that is 
equivalent in architecture to the original No PTA 
model is also better than the No PTA configura-
tion, which shows the benefit of the PTA-
sampling training strategy. We also note that even  
the lightest PTA-LLL configuration is better than 
No PTA baseline (+ 0.0064).

The PTA-LLL configuration is the fastest 
configuration as is shown in Table  3. PTA-LLL 
model shows better Dicescore and is 3.14 % faster. 
Also, the heaviest PTA-BBB model is only 2.98 % 
slower, while offering 0.0084 higher Dicescore. PTA-
HLH has good speed and the best quality making 
it the best configuration in terms of speed to  
quality ratio.

We also note that the benefit of using 3 PTA 
blocks in the U-Net with MobileNetV2 backbone 
is smaller, than it was in the original PTA work. This 
can be explained by the fact that overall U-Net  
with MobileNetV2 backbone is a much larger 
model than the plain MobileNetV2 for classifi- 
cation as can be seen from Table 5. 

Table 5. 
Comparison of the number of model parameters and multiply-additions to perform classification 
(Class.) and segmentation (Segm.) tasks. Note, that for segmentation the baseline No PTA model 

is significantly larger.
Model Task # Params (М) Multiply-Adds (Mops.)

MobileNetV2 No PTA Class. 2.23 104.15
MobileNetV2 PTA-LLL Class. 1.73 87.84
U-Net No PTA Segm. 6.63 871.80
U-Net PTA-LLL Segm. 6.14 855.49

The PTA training procedure is easy to integ- 
rate into existing pipelines. It offers the benefits 
of extra model configuration after the training 
is complete, higher model quality, and lower  
inference time. In addition to that, overall 
U-Net+PTA training time is no larger than that  
of a simple U-Net model as can be seen from 
Table 4.

Conclusions. In this work Post-Train  
Adaptive approach has been first applied to 
the task of image segmentation. The PTA 
approach has made it possible to reconfigure 
the architecture of the designed neural network 
after the training process has been complete. 
The two key components of the approach  
are PTA blocks and PTA-sampling training  

strategy. The PTA blocks were added into the  
U-Net neural network with MobileNetV2 backbone. 
The post-train configuration can be done at 
runtime on any inference device including, but  
not limited to mobile devices.

In addition to post-train neural network 
configuration, the PTA approach has allowed to 
improve image segmentation quality (Dicescore) on 
the CamVid dataset.

The final trained model can be switched at 
runtime between 6 PTA configurations. These 
configurations differ by inference time and 
quality. The best speed is offered by PTA-LLL 
configuration, that is faster and has higher  
quality than No PTA baseline. The best quality  
is achieved by PTA-HLH configuration with  
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better than No PTA inference speed making  
the best configuration in term of speed to  
quality ratio. Importantly, all of the configura- 
tions have better quality than the original U-Net 
(No PTA) model.

The possible future research direction is to 
expand the inference time difference between 
heavy and light configurations to allow a single 
trained PTA-based network to target even more 
device performance categories.
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