MATHEMATICAL MODELS OF OPTIMIZATION PROBLEMS OF PARTIALLY TWO-STAGE POPULATION EVACUATION WITH TERRITORY SEGMENTATION

Authors

DOI:

https://doi.org/10.32782/IT/2023-3-2

Keywords:

humanitarian logistics, evacuation zones, emergency logistics systems, analysis, mathematical modeling, continuous problem of optimal partitioning of sets, two-level partitioning.

Abstract

The paper presents a new models and methods for solving two-stage problems of optimal partitioning of sets with additional connections, which, unlike the existing ones, consider the delivery of a part of a continuously distributed resource directly to the final points, skipping the stage of its collection at the primary point. This make it possible, for example, during the description of the evacuation processes to take into account that part of the affected region population has its own transport and is able to reach the destinations (centers of the second stage) independently, while the rest is evacuated through intermediate collection points. In addition, the proposed model considers the available fleet of motor vehicles, their characteristics, and the cost of use.

References

Alghanmi, N., Alotaibi, R., Alshammari, S., Alhothali, A., Bamasag, O., & Faisal, K. A Survey of Location- Allocation of Points of Dispensing During Public Health Emergencies. Front. Public Health 10:811858. 2022. DOI: 10.3389/fpubh.2022.811858

Bayram, V., & Yaman, H. Shelter location and evacuation route assignment under uncertainty: a benders decomposition approach. Transportation Science, volume. 2018. 52(2), 416-436. URL: https://doi.org/10.1287/trsc.2017.0762

Blyuss, B., Koriashkina, L., Us, S., Minieiev, S., & Dziuba, S. An optimal two-stage distribution of material flow at the fuel and energy complex enterprises. E3S Web of Conferences 109, 00008. 2019, 09 July. URL: https://doi.org/10.1051/e3sconf/201910900008

Bretschneider, S., & Kimms, A. A basic mathematical model for evacuation problems in urban areas. Transportation Research Part A: Policy and Practice, Elsevier, 2011. vol. 45(6), 523-539. URL: https://doi.org/10.1016/j.tra.2011.03.008

Bulat, A., Dziuba, S., Minieiev, S., Koriashkina, L., & Us, S. Solution of the problem to optimize twostage allocation of the material flows. Mining of Mineral Deposits, 2020. volume 14(1), 27-35. URL: https://doi.org/10.33271/mining14.01.027

Gupta, G., & Paruchuri, P. Effect of human behavior on traffic patterns during an emergency. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016. 2052- 2058. URL: https://doi.org/ 10.1109/ITSC.2016.7795888

Hezam, I.M., & Nayeem, Mk. A Systematic Literature Review on Mathematical Models of Humanitarian Logistics. Symmetry, 2021. volume 13(1):11. URL: https://doi.org/10.3390/sym13010011.

Jin, L., Xiang, M., Chen, S., Zheng, X., Yao, R., & Chen, Y. An Orderly Untangling Model against Arching Effect in Emergency Evacuation Based on Equilibrium Partition of Crowd. Discrete Dynamics in Nature and Society, volume 2017, Article ID 2757939, 7 pages. URL: https://doi.org/10.1155/2017/2757939

Kamishetty, S., & Paruchuri, P. Towards a Better Management of Emergency Evacuation using Pareto Min Cost Max Flow Approach. In Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2020), 2020. 237-244. URL: https://doi.org/10.5220/0009395302370244

Kim, S.H., Li, K.J. & Cho, H.G. A Flexible Framework for Covering and Partitioning Problems in Indoor Spaces. ISPRS Int. J. Geo-Inf. 2020, 9, 618. URL: https://doi.org/10.3390/ijgi9110618

Miç, P., Koyuncu, M., & Hallak, J. Primary Health Care Center (PHCC) Location-Allocation with Multi- Objective Modelling: A Case Study in Idleb, Syria. International journal of environmental research and public health, 2019. 16(5), 811. https://doi.org/10.3390/ijerph16050811

Moreno, A., Alem, D., Ferreira, D., & Clark, A. An effective two-stage stochastic multi-trip locationtransportation model with social concerns in relief supply chains. Eur. J. Oper. Res., 269, 1050-1071. 2018. URL: https://doi.org/10.1016/j.ejor.2018.02.022

Us, S., Koriashkina, L., & Stanina, O. An optimal two-stage allocation of material flows in a transportlogistic system with continuously distributed resource. Radio Electronics, Computer Science, Control, 2019, (1). URL: https://doi.org/10.15588/1607-3274-2019-1-24

Wang, H., Du, L., & Ma, S. Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transp. Res. Part E Logist. Transp. Rev., 2014. volume 69, 160-179. URL: https://doi.org/10.1016/j.tre.2014.06.006

Калугін В.Д. Розробка науково-технічних основ для створення системи моніторингу, попередження та ліквідації надзвичайних ситуацій природного та техногенного характеру та забезпечення екологічної безпеки / В.Д. Калугін, В.В. Тютюник, Л.Ф. Чорногор, Р.І. Шевченко // Системи обробки інформації. Харків: Харківський університет Повітряних Сил імені Івана Кожедуба, 2013. Вип. 9(116). С. 204 – 216.

Науково-конструкторські основи створення комплексної системи моніторингу надзвичайних ситуацій в Україні: Монографія / В.А. Андронов, М.М. Дівізінюк, В.Д. Калугін, В.В. Тютюник. Харків: Національний університет цивільного захисту України, 2016. 319 с.

Новожилова М.В. Оцінка ефективності засобів ліквідації надзвичайної ситуації природного характеру методами нечіткої логіки / М.В. Новожилова, Р.В. Гудак, О.І. Чуб // Комунальне господарство міст, 2020, том 1, вип. 154. С. 126 – 132. DOI: 10.33042/2522-1809-2020-1-154-126-132

Kiseleva, E.M., & Koriashkina, L.S. Theory of continuous optimal set partitioning problems as a universal mathematical formalism for constructing Voronoi diagrams and their generalizations. II. Algorithms for constructing Voronoi diagrams based on the theory of optimal set partitioning. Cybernetics and Systems Analysis, 2015. 51(4), 489-499. URL: https://doi.org/10.1007/s10559-015-9740-y

Published

2023-11-27