THE EVOLUTIONARY METHOD BASED ON PARTICLE SWARM OPTIMIZATION AND ARTIFICIAL IMMUNE SYSTEMS MODELLING

Authors

DOI:

https://doi.org/10.32782/IT/2023-4-1

Keywords:

evolutionary method, optimization, artificial immune systems, swarm intelligence, population, compression, technology.

Abstract

An optimization method, which embodies the approaches of particle swarm methods and artificial immune system modeling, for a random multidimensional continuous function is proposed. Research was conducted to determine the optimal settings of the algorithm that implements the proposed method. The proposed method can be applied as a component of information technology to support management decisions and solve technological processes optimizing problems in metallurgical production. The purpose of the work is to develop an original hybrid method of global optimization based on the artificial immune system method and the particle swarm method, as well as to formulate recommendations for setting its parameters. The proposed algorithm should speed up decision-making in the management of technological processes of metallurgical production and increase their accuracy. The methodology of providing a solution consists in the combination of basic search operators of evolutionary optimization methods based on the particle swarms and the human artificial immune system modeling. Traditional swarm search steps of finding a solution and exchanging information about found local optima are used. The search method is supplemented by the principle of competition, borrowed from the method of the artificial immune system, for which the population is divided into smaller swarms or search teams. Steps to control the diversity in the swarm and the particle scattering radius are also proposed. This hybridization allows solving both unconditional and conditional optimization problems in a continuous high-dimensional space. The scientific novelty of the results obtained in the work is that a new evolutionary optimization method in a continuous space based on swarm intelligence is proposed. This method, in contrast to the previously known swarm optimization methods, uses the principle of swarm subgroup competition and the population compression operator, which are characteristic of the method of modeling artificial immune systems. Also, the parameters of the method that maximize its effectiveness are empirically determined. Conclusions. The application of the proposed evolutionary search optimization method to the minimization of test functions in a continuous space with up to 20 dimensions showed its effectiveness in comparison with previously known ones. The application of the described algorithm for solving the optimization problems of technological processes in metallurgical production is considered relevant in further. This method is considered effective for smelting charging task, for using of ferroalloys in foundry production optimization, as well as for predicting the mechanical properties of finished melting products.

References

Богушевський, В. С. Розрахунок металевої частини шихти киснево-конвертерної плавки / В.С. Богушевський, В.Ю. Сухенко, К.О. Сергеєва, С.В. Жук // Металлургическая и горнорудная промышленность. 2010. № 7. С. 266 – 269.

Желдак Т.А. Математична модель матеріально-теплового балансу плавки в кисневому конвертері та критерій її оптимізації / Т.А. Желдак, Д.О. Воловенко // Інформаційні технології в освіті, науці й техніці (ІТОНТ-2012): матеріали міжнар. наук.-практ. конф.: Черкаси, 25-27 квітня 2012 р. Черкаси: ЧДТУ, 2012. т.1. с. 23-24.

Levitin, Anany. Introduction to the design & analysis of algorithms / Anany Levitin. 3rd ed. 2012. 589p.

Гончаренко Я.В. Математичне програмування. К.: НПУ імені М.П. Драгоманова, 2010. 184 с.

Жалдак М.І., Триус Ю.В. Основи теорії і методів оптимізації.: Навчальний посібник. Черкаси: Брама-Україна, 2005. 608 с.

Комп'ютерна математика. Оптимізація обчислень [Текст] : зб. наук. пр. / відп. ред. І. В. Сергієнко ; НАН України, Ін-т кібернетики ім. В. М. Глушкова. К., 2001.

Субботін С. О., Олійник А. О., Олійник О. О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей: Монографія / Під заг. ред. С. О. Субботіна. Запоріжжя: ЗНТУ, 2009. 375 с.

Das A. and Chakrabarti B. K. (Eds.), Quantum Annealing and Related Optimization Methods, Lecture Note in Physics, Vol. 679, Springer, Heidelberg. 2005

Bratton, Daniel; Kennedy, James. Defining a Standard for Particle Swarm Optimization. Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007). pp. 120–127. doi:10.1109/SIS.2007.368035

G. Karafotias, M. Hoogendoorn and A. E. Eiben, "Parameter Control in Evolutionary Algorithms: Trends and Challenges," in IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 167-187, April 2015, doi: 10.1109/TEVC.2014.2308294.

Lucinska M., Wierzchon S.T. Hybrid Immune Algorithm for Multimodal Function Optimization // Recent Advances in Intelligent Information Systems, 2009, pp. 301-313. [Електронний документ]. URL: http://iis.ipipan.waw.pl/2009/proceedings/iis09-30.pdf.

Rowan T.H. Functional Stability Analysis of Numerical Algorithms, Ph.D. Thesis, Department of Computer Sciences, University of Texas at Austin, 1990. [Електронний документ]. URL: http://reference.kfupm.edu.sa/content/f/u/functional_stability_analysis_of_numeric_1308737.pdf.

Bernardino, H.S.; Barbosa, H.J.C. Artificial Immune Systems for Optimization. In: Chiong, R. (eds) Nature-Inspired Algorithms for Optimisation. Studies in Computational Intelligence, vol 193. Springer, Berlin, Heidelberg. 2009. https://doi.org/10.1007/978-3-642-00267-0_14

Navarro-Caceres, M.; Herath, P.; Villarrubia, G.; Prieto-Castrillo, F.; Venyagamoorthy, G.K. "An Evaluation of a Metaheuristic Artificial Immune System for Household Energy Optimization", Complexity, vol. 2018, Article ID 9597158, 11 pages, 2018. https://doi.org/10.1155/2018/9597158

Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S. et al. Description and composition of bio-inspired design patterns: a complete overview. Nat Comput 12, 43–67 (2013). https://doi.org/10.1007/s11047-012-9324-y

Lin, Q.; Zhu, Q.; Wang, N. and al. A multi-objective immune algorithm with dynamic population strategy, Swarm and Evolutionary Computation, Volume 50, 2019, 100477, https://doi.org/10.1016/j.swevo.2018.12.003

Li, L.; Lin, Q.; Ming, Zh. A survey of artificial immune algorithms for multi-objective optimization, Neurocomputing, Volume 489, 2022, Pages 211-229, https://doi.org/10.1016/j.neucom.2021.08.154

Qi, Y.; Hou, Zh.; Yin, M.; Sun, H. & Huang, J. An immune multi-objective optimization algorithm with differential evolution inspired recombination, Applied Soft Computing, Volume 29, 2015, Pages 395-410, https://doi.org/10.1016/j.asoc.2015.01.012

Yıldız, A. R. An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry, Journal of Materials Processing Technology, Volume 209, Issue 6, 2009, Pages 2773-2780, https://doi.org/10.1016/j.jmatprotec.2008.06.028

Zheldak T. Efficiency Improvement of the Algorithm Based on an Artificial Immune System Modeling Applied to Continuous and Combinatorial Problems / Zheldak, T., Ziborov, I., Lyman, V., Zhuk, A. // CEUR Workshop Proceedings, 3106, 2021. pp. 82 – 95.

Avramenko S.E. Guided hybrid genetic algorithm for solving global optimization problems / S.E. Avramenko, T.A. Zheldak, L.S. Koriashkina // Radio Electronics, Computer Science, Control. 2021. № 2.: 174-188. https://doi.org/10.15588/1607-3274-2021-2-18

Published

2023-12-28