ADAPTATION OF CONTROL MODELS FOR VENTILATION SYSTEMS
DOI:
https://doi.org/10.32782/IT/2024-2-5Keywords:
modeling, ventilation system, control, bilinear model, Lyapunov function, error functionAbstract
Optimizing the operation of automated ventilation and air conditioning systems using information about the current state of indoor air parameters allows for rapid adaptation to changing external conditions, improves building energy efficiency, and enhances human comfort. Therefore, the development of modern control technologies for such systems, based on adequate mathematical models, is a relevant task. Research Objective. The aim of this research is to develop a control model for a ventilation system that ensures compliance with regulatory air quality indicators, based on measured data about the current state of indoor air. Methodology. The research methodology involves using a discrete dynamic model and bilinear systems theory to describe the integrated control model of the ventilation system. This approach allows for the consideration of the relationship between the system state and the control influence. Two approaches are applied for adapting the parameters of the control model: using the Lyapunov function stability condition and minimizing the error function, which is calculated as the difference between the observed output of the system and the modeled output. The corresponding algorithms for model parameter adaptation–gradient descent and the least squares method–are provided. Scientific Novelty. The scientific novelty lies in comparing two approaches to adapting the control model of the ventilation system. Conclusions. It was established that adapting the model by minimizing the error function between the observed and modeled system output is preferable due to its focus on model accuracy, ease of implementation, computational efficiency, flexibility, and adaptability. Obtaining information about the real state of the air from sensors and identifying the model parameters allows for the control system model to be adaptive and robust. Adaptive control of the ventilation system based on accurate air parameter data allows for reduced energy consumption.
References
Pipal A. S., A. Taneja. Measurements of Indoor Air Quality. Handbook of Metrology and Applications. Springer, Singapore. 2023. Pp 1–35. DOI: https://doi.org/10.1007/978-981-19-1550-5_90-1
Панкратова Н. Д., Бидюк П. І., Голинко І. М. Синтез многомерной системы управления для прецизионного комплекса искусственного микроклимата. Системні дослідження та інформаційні технології. 2020. № 1. С. 7–20. DOI: https://doi.org/10.20535/SRIT.2308-8893.2020.1.01
Yao Y., Chen J., Feng J., Wang S. Modular modeling of air-conditioning system with state-space method and graph theory. International Journal of Refrigeration. 2019 V. 99. Pр. 9–23. DOI: https://doi.org/10.1016/j.ijrefrig.2018.11.040.]
Guo Q., He Z., Wang Z. Prediction of Hourly PM2.5 and PM10 Concentrations in Chongqing City in China Based on Artificial Neural Network. Aerosol and Air Quality Research. 2023. Volume 23, issue 6. DOI: 10.4209/aaqr.220448
Gao-wa S., Zhen Z., Jianchun N., Linxiao L., Han A., Zhili Y. Using Artificial Neural Networks to Predict Indoor Particulate Matter and Tvoc Concentration in an Office Building: Energy and Built Environment. 2024. DOI: 10.1016/j.enbenv.2024.03.001.
Faqiry M. N., Wang L., Wu H., Krishnamurthy D., Palmintier B. ADP-based Home Energy Management System: A Case Study using DYNAMO. 2018 IEEE Power & Energy Society General Meeting (PESGM). USA. 2018. Рp. 1–5. DOI: 10.1109/PESGM.2018.8585796
Wang H., Chen Y., Kang J., Ding Z., Zhu H. An XGBoost-Based predictive control strategy for HVAC systems in providing day-ahead demand response. Building and Environment. 2023. Vol. 238. Pp. 110350. DOI: https://doi.org/10.1016/j.buildenv.2023.110350.
Wang Y., Velswamy K., Huang B. A Long-Short Term Memory Recurrent Neural Network Based Reinforcement Learning Controller for Office Heating Ventilation and Air Conditioning Systems. Processes. 2017. 5(3):46. DOI: https://doi.org/10.3390/pr5030046
Reyes Pérez C.A., Iglesias Martínez M.E., Guerra-Carmenate J., Michinel Álvarez H., Balvis E., Giménez Palomares F., Fernández de Córdoba P. Indoor Air Quality Analysis Using Recurrent Neural Networks: A Case Study of Environmental Variables. Mathematics. 2023. 11(24):4872. DOI: https://doi.org/10.3390/math11244872
Яценко В. О., Кочкодан О. І., Макаричев М. В., Пашенковська І. С., Черемних О. С., Шолохов О. В. Ідентифікація білінійних систем та керування показниками Ляпунова. Вісник Київського національного університету імені Тараса Шевченка. Серія : Фізико-математичні науки. 2014. Вип. 4. С. 247–250. Режим доступу: http://nbuv.gov.ua/UJRN/VKNU_fiz_mat_2014_4_46.
El Boukhari N., Zerrik E. Constrained optimal control of bilinear systems: Application to an HVAC system. 6th International Conference on Control, Decision and Information Technologies (CoDIT). France. 2019. Рp. 1301–1306. DOI: 10.1109/CoDIT.2019.8820400