CONSTRUCTION PRINTER PLATFORM LIFT CONTROL

Authors

DOI:

https://doi.org/10.32782/IT/2022-1-5

Keywords:

construction printer, platform lifting hydraulic drive, stepper motor, control, mathematical model.

Abstract

The aim of the work is to obtain the necessary data for the development of the boom platform lifting system of the construction 3D-printer, which will increase the accuracy of positioning by optimizing the operating modes of the equipment. Realization of the set purpose provides the decision of problems: development of mathematical model of the electromechanical converter providing exact movement of a boom platform of the construction 3D-printer on the basis of the chosen electric machine; study of the relationship between structural and technological parameters of the lifting system; formation of bases of construction of the control scheme of the electric drive and the hydraulic drive providing holding of the set position in lifting hydraulic drives. The methodology for solving this problem is to simulate the process of moving the hydraulic drives of the platform by changing the pressure in the hydraulic system using a pump and a stepper motor as a drive. Methods of the theory of automatic control of electric devices, Laplace transforms, methods of the theory of electric drive, electric and magnetic field, theory of hydromechanics and mathematical modeling are used. Scientific novelty. In the course of the work the method of construction of the electric drive of the lifting system of the construction 3D-printer platform and obtaining the characteristics of the drive based on the stepper motor in the Matlab/Simulink environment was created. Conclusions. The main result of the research is to increase the accuracy of positioning the height of the boom platform of the construction 3D-printer by developing the modes of operation of the stepper motor as part of the electric drive of the hydraulic lifting system. A model of the boom positioning control channel of a construction 3D printer has been developed, stepper motor control algorithms for changing the operating medium flow rate, productivity and accuracy during boom platform positioning have been studied. The model allows to implement the proposed modeling methods for other object control loops.

References

Edenhofer S., Radler S., Hoss M., Von Mammen S. Self-organised construction with Revit. IEEE 1st International Workshops on Foundations and Applications of Self-Systems. FAS-W 2016. 2016. P. 160–161. DOI: 10.1109/FAS-W.2016.44.

Labonnote N., Ronnquist A., Manum B., Ruther P. Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction. 2016. Vol. 72. P. 347–366. DOI: 10.1016/j.autcon.2016.08.026.

Кулинченко Г.В., Багута В.А., Коробов А.Г. Оценка характеристик мехатронного модуля на базе шагового двигателя. Вісник НТУ «ХПІ». 2013. № 51 (1024). С. 43–53.

Жданов А.В. Математическая модель распределителя позиционного гидропривода строительно- дорожных машин. Омский научный вестник. 2016. № 4 (148). С. 41–44.

Лекомцев П.В., Никитин Ю.Р., Трефилов С.А. Моделирование гибридного шагового двигателя в пространстве состояний при переменном моменте сопротивления нагрузки. Интеллектуальные системы в производстве. 2020. Т. 18, № 3. С. 58–63. DOI: 10.22213/2410-9304-2020-3-58-63.

Репінський С.В., Козлов Л.Г., Паславська О.В., Мошноріз М.М., Бартецький А.А. Математична модель мехатронного гідроприводу маніпулятора з частотним керуванням асинхронного електродвигуна. Вісник машинобудування та транспорту. 2019. Т. 9, № 1. С. 107–114. DOI: 10.31649/2413-4503-2 019-9-1-107-114.

Дусанюк Ж.П., Петров О.В., Дерібо О.В., Черниш А.В. Математична модель та алгоритм дослідження динаміки гідроприводу ковша неповноповоротного екскаватора з урахуванням хвильових процесів в напірній гідролінії. Вісник Вінницького політехнічного інституту. 2015. № 3. С. 121–128. URL: http://nbuv.gov.ua/UJRN/vvpi_2015_3_21.

Published

2022-09-08