STUDY OF THE TRENDS AND PROSPECTS FOR THE DEVELOPMENT OF TUMBLING MILLS
DOI:
https://doi.org/10.32782/EIS/2024-106-4Keywords:
grinding, tumbling mill, energy efficiencyAbstract
This article presents a comprehensive analysis of the latest solutions used in tumbling mills, focusing on the need to increase energy efficiency, optimize and improve grinding processes in the mining industry. The main subject of this study is the analysis of innovative methodologies aimed at improving the productivity of mineral processing. The review covers a critical analysis of recent literature that explains the impact of grinding media geometry on the performance of tumbling ball mills. It emphasizes the importance of particle shape and size distribution in influencing the grinding process dynamics. In addition, the article discusses advances in modeling techniques, in particular the use of discrete element methods (DEMs), which facilitate the modeling of complex interactions in the grinding media, providing valuable information about the dynamics of tumbling mills, allowing to determine the optimal conditions for energy consumption and material processing. Also, the subject of this study is the study of advanced control systems and regulators that are designed to optimize operating parameters and improve the overall efficiency of the milling process. The results of this study emphasize the need to optimize grinding mechanisms to reduce energy consumption and increase the productivity of mineral processing operations. By addressing the issues related to energy consumption and operational efficiency, this study contributes to the current discourse on sustainability practices in the mining industry. The insights gained from this study are poised to inform the development of more efficient mineral grinding technologies, thus highlighting gaps and possible areas for further research in the area of tumbling mill modernization. This work is a fundamental reference for future research aimed at developing the mineral processing industry and improving the efficiency of grinding systems.
References
G.R. Ballantyne, M.S. Powell. Benchmarking comminution energy consumption for the processing of copper and gold ores, Miner. Eng. 65. 2014, 109–114.
Yu, P., Xie, W., Liu, L. X., Hilden, M., Powell, M. S. A consolidated summary on the evolution of a dynamic tumbling mill model. Powder Technology. 2021, 391, 173–183. DOI: https://doi/10.1016/j.powtec.2021.06.017
Конспект лекцій до розділу «Механічні процеси» з курсу ―Процеси та апарати хімічних виробництв» для студентів Ш-ІY курсів механічних спеціальностей / укл. С.О. Опарін. Дніпропетровськ : ДВНЗ УДХТУ, 2012. URL: https://science.lpnu.ua/sites/default/files/journal-paper/2019/oct/19348/900maket2018oruginal-19-25.pdf
Shahbazi B., Jafari M., Parian M., Rosenkranz J., Chehreh Chelgani S. Study on the impacts of media shapes on the performance of tumbling mills – A review. Minerals Engineering. 2020, 157, 106490. DOI: https://doi/10.1016/j.mineng.2020.106490
Matsanga Nyasha Nheta W., Chimwani, Ngonidzashe. Grinding Media in Ball Mills-A Review. 2023, 10.20944/preprints202304.0811.v1.
Lameck N.S., Moys M.H. Effects of media shape on milling kinetics. Minerals Engineering, 2006, 19(13), 1377–1379. DOI: https://doi/10.1016/j.mineng.2005.12.008
Lameck N.S., Kiangi K.K., Moys M.H. Effects of grinding media shapes on load behaviour and mill power in a dry ball mill. Minerals Engineering. 2006, 19(13), 1357–1361. DOI: doi:10.1016/j.mineng.2006.01.005
SHI F. Comparison of grinding media—Cylpebs versus balls. Minerals Engineering. 2004, 17(11-12), 1259–1268. DOI: doi:10.1016/s0892-6875(04)00188-8
Xin Fang, Caibin Wu, Ningning Liao, Chengfang Yuan, Bin Xie, Jiaqi Tong. The first attempt of applying ceramic balls in industrial tumbling mill: A case study. Minerals Engineering. Volume 180, 2022, 107504, ISSN 0892-6875, DOI: https://doi.org/10.1016/j.mineng.2022.107504
Fang Xin, Wu, Caibin Liao, Ningning Yuan, Chengfang Xie, Bin Tong, Jiaqi. The first attempt of applying ceramic balls in industrial tumbling mill: A case study. Minerals Engineering. 2022, 180. 107504. DOI: https://doi.org/10.1016/j.mineng.2022.107504.
Fang X., Wu C., Liao N., Yuan C., Zhong J., Zhu S., Liu A., Xiao K. Understanding the Energy-Saving Mechanism of Ceramic Balls in Tumbling Mills 2024, SSRN DOI: https://doi.org/10.2139/ssrn.4900369
Liao, Ningning, Caibin Wu, Jianjuan Li, Xin Fang, Yong Li, Zhongxiang Zhang, and Wenhang Yin. "A Comparison of the Fine-Grinding Performance between Cylpebs and Ceramic Balls in the Wet Tumbling Mill" Minerals 2022. 12, no. 8: 1007. DOI: https://doi.org/10.3390/min12081007.
Yaoyu Li, Yang You, Dazhao Gou, Aibing Yu, Runyu Yang, A DEM based scale-up model for tumbling ball mills, Powder Technology, Volume 409, 2022, 117854, ISSN 0032-5910. URL: https://doi.org/10.1016/j.powtec.2022.117854
Hu, Z., Hu, G., Liu, Y., Wan, H., Liu, L. Some Considerations on the Parameters Selection of DEM Simulation for Tumbling Ball Mills. 2010 WASE International Conference on Information Engineering. doi:10.1109/icie.2010.248 2010
Mohsen Mhadhbi, Effect of Milling Parameters on DEM Modeling of a Planetary Ball Mill, Advances in Materials Physics and Chemistry, 2023, PP. 49-58, DOI: https://doi:10.4236/ampc.2023.134004
Jonsén P., Pålsson, B.I. & Stener J. Häggblad, H.-Å Tano, Kent Berggren, A. Development of physically based tumbling mill models. IMPC 2014 – 27th International Mineral Processing Congress.
Моделювання процесів розгону електроприводу кульового млина. Вісник Національного університету «Львівська політехніка». Серія: Електроенергетичні та електромеханічні системи / Л.Ф. Карплюк та ін. 2018. № 900. C. 21–27.
Yu, Ping & Xie, Weiguo Liu, L. Powell, Malcolm. Development of a dynamic mill model structure for tumbling mills. IMPC 2014 – 27th International Mineral Processing Congress.
Naumenko, Y., Deineka, K. Building a model of the impact grinding mechanism in a tumbling mill based on data visualization. Eastern-European Journal of Enterprise Technologies, 2023, 3(7 (123), 65–73. URL: https://doi.org/10.15587/1729-4061.2023.283073
Machado M.V.C., Santos D.A., Barrozo, M.A.S., Duarte, C.R. Experimental and Numerical Study of Grinding Media Flow in a Ball Mill. Chemical Engineering & Technology. 2017, 40(10), 1835–1843. DOI: https://doi/10.1002/ceat.201600508
Ramasamy M., Narayanan S.S., Rao, C.D.P. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control. 2005, 15(3), 273–283. DOI: https://doi/10.1016/j.jprocont.2004.06.006
Borodai V., Nesterova О., Shykhov S., Khalayimov Т. Development of automatic speed control system for synchronous drive of high-power tumbling mills. 2018. URL: https://ir.nmu.org.ua/bitstream/handle/123456789/153362/89-91.pdf?sequence=1
Chen X.S., Yang, J., Li, S.H., Li, Q. Disturbance observer based multi-variable control of ball mill grinding circuits. Journal of Process Control. 19(7), 1205–1213. DOI: https://doi/10.1016/j.jprocont.2009.02.004
Dang H.S., Zhang Y., Wang G. Design of Control System for the Ball Mill. Advanced Materials Research. 2014, 898, 497–500. DOI: doi:10.4028/www.scientific.net/amr.898.497