CHERNESHCHUK IHOR. LOAD BALANCING IN LOCAL ELECTRISITY SYSTEMS
DOI:
https://doi.org/10.32782/EIS/2024-106-7Keywords:
renewable energy sources, balancing, local electricity system, energy resources, flexibilityAbstract
Maintaining a balance between electricity generation and consumption is the most important condition for the stable operation of the electric power system. The ever-increasing share of renewable energy sources in the overall generation balance has a variable generation schedule, which makes it necessary to use new approaches to balancing the demand and supply of electric energy, while requiring a more prompt response to changes in demand and supply, which is especially important in local electric power systems (LES) to ensure stable, reliable and efficient operation of energy networks. When considering issues of balancing and flexibility of both generators and loads, it is necessary to distinguish types of balances. The article presents the following types of balances: balance of fuel and energy resources, balance of energy production (electrical and thermal) in UES of Ukraine, balance of electricity in electricity transmission grids, balance of electricity in electricity distribution networks, balance of energy in LES (Microgrid), balance of electricity in LES (Microgrid – Nanogrid). To consider the features of balancing electricity consumption in the LES, a system consisting of one generator and two loads, where the load is connected in parallel, is considered. The article considers three types of local electric power systems (LES), for which balancing conditions are obtained: direct current generator; alternator; alternating current system. On the basis of the given ratios regarding the balancing conditions for each selected type of LES, it is possible to assess the “nonoptimality” of electricity transfers, as well as to use the maintained balancing conditions when organizing the optimization process of transferring the value of generated and consumed electricity for participation in the electricity markets.
References
Кириленко О.В., Денисюк С.П., Блінов І.В. Енергетичний менеджмент: нові пріоритети ХХІ століття. Енергетика: економіка, технології, екологія: науковий журнал. 2024. № 1. С. 7–27. https://doi.org/10.20535/1813-5420.1.2024.297508
Morales-España Germán, Martínez-Gordón Rafael. Classifying and modelling demand response in power systems. Energy. 2022. № 242. https://doi.org/10.1016/j.energy.2021.122544
Lei Shao, Xu Zhou, Ji Li, Hongli Liu, Xiaoqi Chen, and Mustafa I. Fadhel. Microgrids as Flexible and Network-Connected Grid Assets in Active Distribution Systems. JECE 2018. 2018. https://doi.org/10.1155/2018/6079617
Балансова надійність електричної мережі з фотоелектричними станціями : монографія. П.Д. Лежнюк та ін. Вінниця : ВНТУ, 2018. 136 с.
Козачук О.І., Лежнюк П.Д. Формування локальних електроенергетичних систем у складі об’єднаної електроенергетичної системи. Вісник Хмельницького національного університету. Технічні науки, 2024. № 337. С. 352–356. https://doi.org/10.31891/2307-5732-2024-337-3-53
Finon D., Pignon V. Electricity and long-term capacity adequacy: The quest for regulatory mechanism compatible with electricity market, Utilities Policy. 2008. vol. 16, no. 3, pp. 143–158.
Transactive Energy, Flexibility Provision in Multi-microgrids Using Stackelberg Game, in CSEE Journal of Power and Energy Systems / W. Hua et al. 2023. vol. 9, no. 2, pp. 505-515. https://doi.org/10.17775/CSEEJPES.2021.04370
I. Munn´e-Collado F. M. Apr`a P. Olivella-Rosell R. Villafafila-Roble, A. Sumper. The potential role of flexibility during peak hours on greenhouse gas emissions: a life cycle assessment of five targeted national electricity grid mixes. Energies. 2019 vol. 12, no. 23. https://doi.org/10.3390/en12234443
Бєлоха Г.С., Тараба М.О. Транзактивні локальні електроенергетичні системи: особливості функціонування та перспективи розвитку. Енергетика: економіка, технології, екологія. 2023. № 4. С. 29–37. https://doi.org/10.20535/1813-5420.4.2023.290888